• Title/Summary/Keyword: action design research

Search Result 567, Processing Time 0.025 seconds

An Exploratory Approach to Textile Designer's Cognition Model -focused on the Stage of Motif Development- (텍스타일 디자이너의 인지 모형에 대한 탐색적 접근 -모티브 개발 단계를 중심으로-)

  • 송승근;이주현
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2003
  • This study was an exploratory approach to the cognitive model of textile designers on the stage of motif development in textile design process. Prior to the main research, several previous studies adopting methods of video/audio protocol analysis were reviewed. On the basis of the review, the categories of design action were derived as an analysis frame by application of top-down access method, meanwhile the sub-groups of each category of design action were identified through a bottom-up access method. To summarize the research result, total three categories of textile design action appeared based on the theory of ‘Human processor’ model : ‘motor action’, ‘perceptual action’ and 'cognitive action'. In next, a new coding scheme suitably explaining these three categories of fertile design action was developed. Finally, a cognitive model of textile designer on the stage of motif development, employing the new coding scheme, was suggested in this study.

  • PDF

Improving a newly adapted teaching and learning approach: Collaborative Learning Cases using an action research

  • Lee, Shuh Shing;Hooi, Shing Chuan;Pan, Terry;Fong, Chong Hui Ann;Samarasekera, Dujeepa D.
    • Korean journal of medical education
    • /
    • v.30 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • Purpose: Although medical curricula are now better structured for integration of biomedical sciences and clinical training, most teaching and learning activities still follow the older teacher-centric discipline-specific formats. A newer pedagogical approach, known as Collaborative Learning Cases (CLCs), was adopted in the medical school to facilitate integration and collaborative learning. Before incorporating CLCs into the curriculum of year 1 students, two pilot runs using the action research method was carried out to improve the design of CLCs. Methods: We employed the four-phase Kemmis and McTaggart's action research spiral in two cycles to improve the design of CLCs. A class of 300 first-year medical students (for both cycles), 11 tutors (first cycle), and 16 tutors (second cycle) were involved in this research. Data was collected using the 5-points Likert scale survey, open-ended questionnaire, and observation. Results: From the data collected, we learned that more effort was required to train the tutors to understand the principles of CLCs and their role in the CLCs sessions. Although action research enables the faculty to improve the design of CLCs, finding the right technology tools to support collaboration and enhance learning during the CLCs remains a challenge. Conclusion: The two cycles of action research was effective in helping us design a better learning environment during the CLCs by clarifying tutors' roles, improving group and time management, and meaningful use of technology.

Prediction Models for the Prying Action Force and Contact Force of a T-stub Fastened by High-Strength Bolts (고력볼트로 체결된 T-stub의 지레작용력 및 부재 접촉력 예측모델)

  • Yang, Jae Guen;Baek, Min Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.409-419
    • /
    • 2013
  • A T-stub connection with high-strength bolts under tensile force is affected by prying action force and the contact force, among others, between members. If a design equation that does not consider such prying action force and contact force between members is not proposed, the T-stub under tensile force is liable to be fractured under the strength lower than the estimated design strength. To prevent it, many studies have proposed contact force estimation equations between members as well as the prying action force of the T-stub connection with high-strength bolts. However, no design equations based on such research have been proposed in South Korea. Therefore, this study aims to propose an estimation model for more accurate prying action force and contact force, and improve on previously proposed estimation models by implementing the three-dimensional, nonlinear finite element analysis. Throughout the results of three-dimensional, nonlinear finite element analysis, the prediction model proposed in this research for the prying action force and contact force of a T-stub provided much more accurate estimation than that of a existing prediction model previously suggested.

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

Extensible Hierarchical Method of Detecting Interactive Actions for Video Understanding

  • Moon, Jinyoung;Jin, Junho;Kwon, Yongjin;Kang, Kyuchang;Park, Jongyoul;Park, Kyoung
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.502-513
    • /
    • 2017
  • For video understanding, namely analyzing who did what in a video, actions along with objects are primary elements. Most studies on actions have handled recognition problems for a well-trimmed video and focused on enhancing their classification performance. However, action detection, including localization as well as recognition, is required because, in general, actions intersect in time and space. In addition, most studies have not considered extensibility for a newly added action that has been previously trained. Therefore, proposed in this paper is an extensible hierarchical method for detecting generic actions, which combine object movements and spatial relations between two objects, and inherited actions, which are determined by the related objects through an ontology and rule based methodology. The hierarchical design of the method enables it to detect any interactive actions based on the spatial relations between two objects. The method using object information achieves an F-measure of 90.27%. Moreover, this paper describes the extensibility of the method for a new action contained in a video from a video domain that is different from the dataset used.

An Action Research on Flipped Learning for Fundamental Nursing Practice Courses (플립러닝 적용 기본간호학실습 수업에 대한 실행연구)

  • Kim, Heeyoung;Kim, Yun-Hee
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.24 no.4
    • /
    • pp.265-276
    • /
    • 2017
  • Purpose: This study was conducted to design and implement a fundamental nursing practice based on flipped learning and to examine the effects. Methods: Participants were 57 students who were taking the fundamental nursing practice course at D university in N city. The study included processes of instructional design, action/effects and reflection. Data were analyzed using paired t-test with the SPSS/WIN 23.0. Results: In the instructional design stage, the class consisted of 3 parts: outside class (pre-learning), inside class (assessment, collaborative practice, peer review, reflection), after-class (self-directed practice, feedback). In the action/effects stage, the flipped learning was applied for 15 weeks according to the instructional design and then the effects of flipped learning were evaluated. Students showed a significant improvement in self-directed learning ability (t=-3.56, p=.001) and critical thinking disposition after the class (t=-3.72, p<.001). Finally, in the reflection stage, the researchers examined whether the four pillars of flipped learning occurred. Conclusion: Findings indicate that flipped learning applied in fundamental nursing practice is effective in improving self-directed learning ability and critical thinking disposition. The action research method was a useful way to foster professor's educational competency as well as to verify effects of a new nursing education method.

Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking

  • Seres, Noemi;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.39-58
    • /
    • 2011
  • The subject of the ongoing research work is to analyze the composite action of the structural elements of composite slabs with profiled steel decking by experimental and numerical studies. The mechanical and frictional interlocks result in a complex behaviour and failure under horizontal shear action. This is why the design characteristics can be determined only by standardized experiments. The aim of the current research is to develop a computational method which can predict the behaviour of embossed mechanical bond under shear actions, in order to derive the design characteristics of composite slabs with profiled steel decking. In the first phase of the research a novel experimental analysis is completed on an individual concrete encased embossment of steel strip under shear action. The experimental behaviour modes and failure mechanisms are determined. In parallel with the tests a finite element model is developed to follow the ultimate behaviour of this type of embossment, assuming that the phenomenon is governed by the failure of the steel part. The model is verified and applied to analyse the effect of embossment's parameters on the behaviour. In the extended investigation different friction coefficients, plate thicknesses, heights and the size effects are studied. On the basis of the results the tendencies of the ultimate behaviour and resistance by the studied embossment's characteristics are concluded.

Distribution of Environmental Awareness Applying an Ecological Theory of Ted Hughes

  • CHO, Jongwhee
    • Journal of Distribution Science
    • /
    • v.19 no.9
    • /
    • pp.53-64
    • /
    • 2021
  • Purpose: The current study aims and reviews the current state of research in green awareness' distribution structure using the ecological theory of Ted Hughes who was regarded as one of the best English poets of the 20 century. Ted poetry has innovated ecological distribution. It has inspired so many young people to have a positive energy impact on the environment. Research design, data and methodology: Action research design is an approach used extensively in qualitative content analysis. This design starts by adopting an exploratory claim that develops the research objectives, hence instigating the action process, which involves several strategies. This type of design involves a cyclic process of stance then action. Results: According to the investigation, there are nine solutions that can deal with the green distribution based on previous literature review, applying an ecological approach of Ted Hughes to green awareness distribution. The solutions figured out that Ted's novels had an innovative impact on the environment as it is clear that information is given to society. Conclusions: It is observed that having a highly professional environment is good enough for a structure to go green. But, on the other hand, polluting our environment can endanger species by causing health diseases and environmental problems.