• Title/Summary/Keyword: acrylic modified

Search Result 133, Processing Time 0.022 seconds

Effect of Plasma Polymerization Coating of CNTs on the Tensile Strength of Pei/Cnt Composites

  • Song, K.C.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2005
  • Multi-walled carbon nanotubes (CNTs), which were purified by etching in 25% $H_2SO_4/HNO_3$ solution at $60^{\circ}C$ for 2 h, were modified via plasma polymerization coating of acrylic acid, allylamine or acetylene, and then utilized to prepare PEI/CNT composites. First, plasma polymerization conditions were optimized by measuring the solvent resistance of coatings in THF, chloroform and NMP, and the tensile strength of PEI/CNT (0.5%) composites as a function of plasma power (20~50 W) and monomer pressure (20~50 mTorr). The tensile strength of PEI/CNT composites was further evaluated as a function of CNT loading (0.2, 0.5 and 1%). Finally, FT-IR was utilized to provide a better understanding of the improved tensile properties of PEI/CNT composites via plasma polymerization coating of CNTs. Plasma polymerization of acrylic acid greatly enhanced the tensile strength of PEI/CNT composites, as did allylamine but to a lesser degree, while acetylene plasma polymerization coating decreased tensile strength.

  • PDF

Water Resistance and Thermal Properties of Resin Based on Silane-modified Vinyl Acetate-Acrylic Emulsion Copolymers (실리콘 수식 비닐아세테이트-아크릴 공중합체 수지의 방수성 및 열적 성질)

  • Naghash, Hamid Javaherian
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • Triphenylvinylsilane (TPVS) containing vinyl acetate (VAc), butyl acrylate (BA), and Nmethylolacrylamide (NMA) copolymers were prepared by emulsion polymerization. The polymerization was performed at $80^{\circ}C$ in the presence of auxiliary agents and ammonium peroxodisulfate (APS) as the initiator. Sodium dodecyl sulphate (SDS) and Arkupal N-300 were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic light scattering (DLS). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of silicone concentrations on the properties of the TPVS-containing VAc-acrylic emulsion copolymers were discussed. The obtained copolymers have high solid content (50%) and can be used in weather resistant emulsion paints as a binder.

Pwevaporation Separation of Aqueous Ethanol Solution Through Poly(vinyl alcohol) Membranes Crosslinked Poly(acrylic acid-co-maleic acid) (Poly(acrylic acid-co-maleic acid)로 가교된 Poly(vinyl alcohol)막을 이용한 에탄을 수용액의 투과증발분리 특성)

  • 남상용;성경수;천세원;임지원
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2002
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid-co-maleic anhydride) (PAM) as a polymeric crosslinking agent were prepared to investigate the pervaporation performance for the dehydration separation of aqueous ethanol solution. The characteristics of the resulting membranes crosslinked(x) were analysed by FT-IR and water swelling test. The water swelling decreased with increasing crosslinking agent content. The crosslinked PVA membranes with PAM showed lower water swelling than those of PVA membrane crosslinked with glutaraldehyde and modified PVA membrane. The swelling of water molecules in the crosslinked PVA membranes is more restricted by both chemical crosslinking between PVA and polymeric crosslinking agent chains and physical crosslinking by the entanglement between the PVA and polymeric crosslinking agent chains. For the pervaporation of aqueous ethanol solution through the crosslinked membrane, as the contents of crosslinking agent increased, the separation factor increased while the permeation flux decreased. The separation factor slightly decreased and permeation flux increased with increasing feed water content. As a result it could be considered that PVA-PAM membranes suppressed the plasticization effect even in the range of high water concentration in fled.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Polydopamine Coating Behaviors on the Acrylic Acid Grafted-Nanofibers (아크릴산이 그라프트된 나노섬유에서의 폴리도파민 코팅)

  • Shin, Young Min;Kim, Woo-Jin;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.371-376
    • /
    • 2011
  • The surface property of the materials used in tissue engineering application has been essential to regulate cellular behaviors by directing their adhesion on the materials. To modulate surface property of the synthetic biodegradable materials, a variety of surface modification techniques have used to introduced surface functional groups or bioactive molecules, recently polydopamine coating method have been introduce as a facile modification method which can be coated on various materials such as polymers, metals, and ceramics regardless of their surface property. However, there are no reports about the degree of polydopamine coating on the materials with different hydrophilicity. In the present study, we prepared acrylic acid grafted nanofibrous meshes using electron-beam irradiation, and then coated meshes with polydopamine. Polydopamine successfully coated on the all meshes, both properties of acrylic acid and polydopamine were detected on the meshes. In addition, the degree of polydopamine deposition on the materials has been altered according to surface hydrophilicity, which was approximately 8-times greater than those on the non-modified materials. In conclusion, dual effect from the acrylic acid grafting and polydopamine may give a chance as a alternative tool in tissue engineering application.

The Reactivity of Different Polyols for Paint to Polyisocyanate (도료용 폴리올 종류에 따른 폴리이소시아네이트와의 반응성)

  • Seo, Seok-Hwan;Suh, Cha-Soo;Park, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.388-396
    • /
    • 2008
  • 2 Components polyurethane coatings are widely used for the industrial coating in general because of its excellent film performance and the workability which were brought by the 3 dimensional cross linked chain structures being formed after the reaction between polyol and polyisocyanate. 2 components polyurethane can be classified into alkyd polyol, polyester polyol, acrylic polyol and polyester modified acrylic polyol depending on where it is used. This research was conducted under the conditions below; different chemical compositions of resin for paint, set the same conditions of viscosity, thinner and acid value, set alternative polyols, OH values and catalysts, set alternative polyisocyanate hardeners of the paint, measure the reaction rates and dynamic mechanical characteristics using RPT-3000, Rotation Rheometer, DMA and FTIR. The research found that the reactivity between polyol and isocyanate influences the film performance and workability depending on the catalysts, OH values and chemical compositions. We find out that different reaction rate of acrylic polyol and polyester modified acrylic polyol with poly-isocyanate is not influenced on temperature and catalyst. In addition, reaction speed of high hydroxyl content polyol is faster than low hydroxyl equivalent. These results can improve difficult working condition to apply urethane coating.

Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting (플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착)

  • Yang Hee-Seok;Park Kwi-Deok;Ahn Kwang-Duk;Kim Byung-Soo;Han Dong-Keun
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • To utilize as highly functional scaffolds for tissue engineering by improving hydrophobicity and cell compatibility of the exist polymer scaffolds, the biodegradable poly(L-lactic acid) (PLLA) films and scaffolds having the optimal hydrophilicity were prepared by in situ plasma treatment and grafting of a carboxyl acid-containing monomer, acrylic acid (AA) in the chamber. From the results of surface analyses, surface-modified nonporous PLLA film and dual pore scaffold surfaces showed high hydrophilicity due to the decrease in contact angle and the increase in carboxylic groups as compared with untreated PLLA control. In particular, among various surface modification methods, Ar(argon)+AA+AA sample prepared by Ar plasma and then acrylic acid treatments displayed lower contact angle and more carboxylic groups thar Ar/AA and Ar+TP(thermal polymerization) samples, indicating that Ar+AA+AA sample was optimally treated for improving its hydrophilicity. In the cases of surface modified nonporous PLLA films and dual pore scaffolds, the adhesion and proliferation of chondrocytes increased with increasing their hydrophilicity.

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

An Experimental Study on the Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials by A Sol-Gel Process (졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성)

  • Han, Hung-Gu;Kong, Ho-Sung;Yoon, Eui-Sung;Yang, Seung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.215-225
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several combinations of metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), $titaniumisopropoxide(Ti(Opr^{j})_{4})$, $zirconiumisopropoxide(Zr(Opr^{j})_{4})$ and $aluminumbutoxide(Al(Obu^{t})_{4})$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively, in this work. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribe-tester where a reciprocating steel ball slid on a test material, and the tribological property was also evaluated with respect to both heat-curing temperature and tile time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher heat-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that it was caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C$.

  • PDF