• Title/Summary/Keyword: acquisition time

Search Result 2,022, Processing Time 0.031 seconds

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

A Study on the remote acuisition of HejHome Air Cloud artifacts (스마트 홈 헤이 홈 Air의 클라우드 아티팩트 원격 수집 방안 연구)

  • Kim, Ju-eun;Seo, Seung-hee;Cha, Hae-seong;Kim, Yeok;Lee, Chang-hoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.69-78
    • /
    • 2022
  • As the use of Internet of Things (IoT) devices has expanded, digital forensics coverage of the National Police Agency has expanded to smart home areas. Accordingly, most of the existing studies conducted to acquire smart home platform data were mainly conducted to analyze local data of mobile devices and analyze network perspectives. However, meaningful data for evidence analysis is mainly stored on cloud storage on smart home platforms. Therefore, in this paper, we study how to acquire stored in the cloud in a Hey Home Air environment by extracting accessToken of user accounts through a cookie database of browsers such as Microsoft Edge, Google Chrome, Mozilia Firefox, and Opera, which are recorded on a PC when users use the Hey Home app-based "Hey Home Square" service. In this paper, the it was configured with smart temperature and humidity sensors, smart door sensors, and smart motion sensors, and artifacts such as temperature and humidity data by date and place, device list used, and motion detection records were collected. Information such as temperature and humidity at the time of the incident can be seen from the results of the artifact analysis and can be used in the forensic investigation process. In addition, the cloud data acquisition method using OpenAPI proposed in this paper excludes the possibility of modulation during the data collection process and uses the API method, so it follows the principle of integrity and reproducibility, which are the principles of digital forensics.

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

Web-based Disaster Operating Picture to Support Decision-making (의사결정 지원을 위한 웹 기반 재난정보 표출 방안)

  • Kwon, Youngmok;Choi, Yoonjo;Jung, Hyuk;Song, Juil;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.725-735
    • /
    • 2022
  • Currently, disasters occurring in Korea are characterized by unpredictability and complexity. Due to these features, property damage and human casualties are increasing. Since the initial response process of these disasters is directly related to the scale and the spread of damage, optimal decision-making is essential, and information of the site must be obtained through timely applicable sensors. However, it is difficult to make appropriate decisions because indiscriminate information is collected rather than necessary information in the currently operated Disaster and Safety Situation Office. In order to improve the current situation, this study proposed a framework that quickly collects various disaster image information, extracts information required to support decision-making, and utilizes it. To this end, a web-based display system and a smartphone application were proposed. Data were collected close to real time, and various analysis results were shared. Moreover, the capability of supporting decision-making was reviewed based on images of actual disaster sites acquired through CCTV, smartphones, and UAVs. In addition to the reviewed capability, it is expected that effective disaster management can be contributed if institutional mitigation of the acquisition and sharing of disaster-related data can be achieved together.

Exploration on the Difficulties of Korean Dance Instructors Targeting Senior People : Extension to the Development of PBL Problems (노인대상 한국무용 지도자의 애로요인 탐색: PBL 문제개발로의 확장)

  • Yoo, Ji-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.93-103
    • /
    • 2020
  • This study aims to explore the difficulties of Korean dance instructors targeting senior people and extends the difficulties found to developing PBL problems applicable to the instructors' education. To address the goal, this author employed an open-ended questionnaire consisting of four questions and 1:1 interview and collected data. According to the study results, total nine subfactors were drawn from four difficulties associated with student management, the curriculum, performances, and class environment. First, about difficulties related to student management, 'conflicts between students' and 'demand for personalized class' were explored. Second, regarding difficulties about the curriculum, 'refusal against new teaching methods' and 'level difference according to the ability of acquisition' were explored. Third, concerning difficulties related to having performances, 'lack of time for practicing', 'needs to achieve excellent performances', and 'the administration of organizations in charge' were explored. Fourth, about difficulties associated with class environment, 'environment in general' and 'spatial environment' were explored. Also, based on the difficulties explored from dance instructors for senior people, this researcher has developed four PBL problems through community dance for harmony, joint choreography-based creative dance, playful dance allowing role division, and mirroring-based dance.

A Study on Tire Surface Defect Detection Method Using Depth Image (깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구)

  • Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

A Study on the Development of Capacitor Exchange Type GDU of Propulsion Control Device of Electric Railway Vehicle Capable of Life Diagnosis (수명진단이 가능한 전기철도차량 추진제어장치의 커패시터 교환 형 GDU 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.475-484
    • /
    • 2018
  • The propulsion control device of an electric railway vehicle is a key main component corresponding to an engine of an automobile, and a device for controlling this is a device called a GDU (Gate Drive Unit). Also, when the frequency of failure of the propulsion control system was analyzed, the nonconformity ratio of GDU was the highest. GDU was not able to access core technologies due to the introduction of foreign products, and there were general problems with overall maintenance activities due to discontinuation of GDU of the manufacturer. The GDU has reached the end of its life with 23 to 14 years of long-term use.In order to solve these problems, this study was designed to identify the proper life span by analyzing compatible GDU's acquisition and failure, and to improve the existing system of maintenance focusing on health inspection. Maintenance of the components with a short life span compared to the entire service life is essential. Most foreign parts introduced at the beginning of the construction are not replaced due to technical problems or long-term operation. However, due to the characteristics of railway vehicles with a long life span of more than 25 years, it is necessary to maintain them for a long period of time. The study should be more concrete and empirical. The replacement type GDU of capacitors was able to easily measure the life of the capacitance by removing the capacitor modules, measure the life span of each unit test, and accurately perform preventive maintenance of the capacitor.

A Study on the Decryption Method for Volume Encryption and Backup Applications (볼륨 암호화 및 백업 응용프로그램에 대한 복호화 방안 연구)

  • Gwui-eun Park;Min-jeong Lee;Soo-jin Kang;Gi-yoon Kim;Jong-sung Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.511-525
    • /
    • 2023
  • As awareness of personal data protection increases, various Full Disk Encryption (FDE)-based applications are being developed that real-time encryption or use virtual drive volumes to protect data on user's PC. FDE-based applications encrypt and protect the volume containing user's data. However, as disk encryption technology advances, some users are abusing FDE-based applications to encrypt evidence associated with criminal activities, which makes difficulties in digital forensic investigations. Thus, it is necessary to analyze the encryption process used in FDE-based applications and decrypt the encrypted data. In this paper, we analyze Cryptomator and Norton Ghost, which provide volume encryption and backup functions. We analyze the encrypted data structure and encryption process to classify the main data of each application and identify the encryption algorithm used for data decryption. The encryption algorithms of these applications are recently emergin gor customized encryption algorithms which are analyzed to decrypt data. User password is essential to generate a data encryption key used for decryption, and a password acquisition method is suggested using the function of each application. This supplemented the limitations of password investigation, and identifies user data by decrypting encrypted data based on the acquired password.