• Title/Summary/Keyword: acoustical variable

Search Result 143, Processing Time 0.021 seconds

Time-Varying Subspace Tracking Algorithm for Nonstationary DOA Estimation in Passive Sensor Array

  • Lim, Junseok;Song, Joonil;Pyeon, Yongkug;Sung, Koengmo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper we propose a new subspace tracking algorithm based on the PASTd (Projection Approximation Subspace Tracking with deflation). The algorithm is obtained via introducing the variable forgetting factor which adapts itself to the time-varying subspace environments. The tracking capability of the proposed algorithm is demonstrated by computer simulations in an abruptly changing DOA scenario. The estimation results of the variable forgetting factor PASTd(VFF-PASTd) outperform those of the PASTd in the nonstationary case as well as in the stationary case.

  • PDF

Gauss Newton Variable forgetting factor RLS algorithm for Time Varying Parameter Estimation. (Gauss Newton Variable Forgetting Factor Recursive Least Squares 알고리듬을 이용한 시변 신호 추정)

  • Song Seongwook;Lim Jun-Seok;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.173-176
    • /
    • 2000
  • 시변 신호 추적 특성을 향상시키기 위하여, Gauss-Newton Variable Forgetting Factor RLS (GN-VFF-RLS) Algorithm을 제안한다. 최적화된 망각인자를 가정한 기존의 RLS 알고리듬과 비교하여, 제안된 방법은 특히 신호의 변화가 급격히 일어날 경우 주목할만한 추정 성능의 향상을 보여준다. 제안된 알고리듬의 시변 추정 특성을 신호 대 잡음비와 시변 정도에 대하여 모의 실험하고 기존의 추정 알고리듬들과 비교한다.

  • PDF

Efficient Variable Dimension Quantization of Harmonic Magnitude (효율적인 가변차원 하모닉 크기 양자화기법)

  • 신경진;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.47-54
    • /
    • 2001
  • In this paper, we present a variable dimension vector quantization for spectral magnitudes. Espectially, spectral magnitudes of the Harmonic coder, need variable dimension quantizer because those are not fixed dimension. So, this paper present efficient quantization methods. These methods use variable Discrete Cosine Transform(DCT) for spectral magnitude parameters and NSTVQ which is combined odd/even, split and multi-stage structure, proposed quantization methods use Spectral Distortion(SD) for performance measure. Consequently, Multi-Stage Nonsquare Transform Vector Quantization(MSNSTVQ) is the best in performance measure.

  • PDF

Design of the Extended Kalman Filter for Frequency-amplitude Tracker (확장칼만필터 주파수-진폭 추적기 설계)

  • 윤종락;노용주;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.256-263
    • /
    • 2002
  • In this study, the tracking of the temporal variation of the frequency and the amplitude in the presence of additive white Gaussian noise is considered using the Extended Kalman filter (EKF. The EKF has many applications and it has been applied to the problem of tracking the time-variable frequency. However the existing EKF frequency trackers could was driven in the small time-variable amplitude or required the additional amplitude tracker in the large time-variable amplitude. In this study, the EKF frequency-amplitude tracker, which could track both frequency and amplitude simultaneously from the measured signal in the relatively large time-variable amplitude environment, is proposed for improving the performance of the time-variable frequency tracking and its performance is verified by the simulation and the experimental work.

A Study on the Method of Assessing Spatial Speech Transmission Quality as an Indicator of Room Acoustics -Concentrated on the Articulation Test under Variable Ambient Noise- (건축 음향의 실내 청취조건 평가방법에 관한 연구-변동외부소음하의 명료도시험에 관하여-)

  • Han, Myung-Ho;Lee, Tae-Gang;Oh, Yang-Ki;Kim, Sun-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 1991
  • Articulation test is a good predictor of spatial speech transmission quality. Like many other languages, articulation testing method using Korean language was proposed in 1989, and which was proved as a valid indicator in rooms with static background noise. In this paper, the testing method is examined in variable noise conditions. According to the experiment performed in 26 classrooms with variable background noise, the proposed articulation testing method using Korean Language is still in variable conditions.

  • PDF

An algebraic step size least mean fourth algorithm for acoustic communication channel estimation (음향 통신 채널 추정기를 이용한 대수학적 스텝크기 least mean fourth 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • The least-mean fourth (LMF) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the least mean square (LMS) algorithms with variable step size. It is because the variable step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a variable step-size LMF algorithm is proposed, which adopts an algebraic optimal step size as a variable step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

An time-varying acoustic channel estimation using least squares algorithm with an average gradient vector based a self-adjusted step size and variable forgetting factor (기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • RLS (Recursive-least-squares) algorithm is known to have good convergence and excellent error level after convergence. However, there is a disadvantage that numerical instability is included in the algorithm due to inverse matrix calculation. In this paper, we propose an algorithm with no matrix inversion to avoid the instability aforementioned. The proposed algorithm still keeps the same convergence performance. In the proposed algorithm, we adopt an averaged gradient-based step size as a self-adjusted step size. In addition, a variable forgetting factor is introduced to provide superior performance for time-varying channel estimation. Through simulations, we compare performance with conventional RLS and show its equivalency. It also shows the merit of the variable forgetting factor in time-varying channels.

Topology-optimization-based Partition Design for Maximizing or Minimizing the Eigenfrequency of a Double Cavity (이중 공동의 고유 주파수 최대/최소화를 위한 위상 최적화 기반 격벽 설계)

  • Lee, Jin-Woo;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1118-1127
    • /
    • 2008
  • The position and size of holes in the partition of a double cavity are known to strongly affect the eigenfrequency of the longitudinal eigenmodes of the double cavity. To maximize or minimize the eigenfrequency of the hole-partitioned double cavity, two acoustical topology optimization problems are formulated and solved. While two sub-cavities are filled with air, a partition between them is assumed to consist of sub-partitions of variable acoustical properties. One design variable is assigned to each sub-partition, whose material properties are interpolated as those of an intermediate material between air and a rigid body. The penalty parameter of the used interpolation function is adjusted to obtain a distinct air and rigid body distribution at the converged stage in each acoustical topology optimization problem. A special attention is paid to the selection of initial values of design variables to obtain solutions as close to global optimum and symmetric as possible. To show numerical characteristics of these optimization problems, the formulated problems are first solved for the one-dimensional partition design domain and then for the two-dimensional partition design domain.

Time-Varying Signal Parameter Estimation by Variable Fading Memory Kalman Filtering

  • Lee, Sang-Wook;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.47-52
    • /
    • 1998
  • This paper prolposes a VFM (Variable Fading Memory)Kalman filtering and applies it to the parameter estimation for time-varying signals. By adaptively calculating the fading memory, the proposed algorithm does not require any predetermined fading memory when estimating the time-varying signal parameter. Moreover, the proposed algorithm has faster convergence speed than fixed fading memory one in case the signal contains an impulsive outlier. The performance of parameter estimation for time-varying signal is evaluated by computer simulation for two cases, one of which is the chirp signal whose frequency varies linearly with time and the other is the chip signal with an impulsive outlier. The experimental results show that the VFM Kalman filtering estimates the parameter of the chirp signal more rapidly than the fixed fading memory one in the region of an outlier.

  • PDF

An Propagation Path Analysis for Optimal Position Selection of Microcell Base Station in the Mobile Communication System (이동통신 마이크로셀 기지국의 최적 위치 선정을 위한 전파경로 해석)

  • 노순국;박창균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.92-100
    • /
    • 1999
  • In the microcell mobile communication, we propose algorithms processing operational disposition to exactly analysis propagation environments from the base station to mobile stations. Algorithms are developed by the triangle analysis method can operate variable propagation paths and reflect numbers. For simulation, we suppose that mobile stations are located in the shadow region of the line of sight and the area of the non-line of sight sloping against the line of sight area at variable angles. By analyzing the results of simulation using proposed algorithms, we can be applied to the optimal position selection of the base station in the microcell mobile communication.

  • PDF