• Title/Summary/Keyword: acoustic parameter

Search Result 418, Processing Time 0.03 seconds

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

Optimum Design for Inlet and Outlet Locations of Circular Expansion Chamber for Improving Acoustic Performance (원형 단순 확장소음기의 성능향상을 위한 입.출구 위치의 최적설계)

  • An, Se-Jin;Kim, Bong-Jun;Jeong, Ui-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2487-2495
    • /
    • 2000
  • The acoustic characteristics of expansion chamber will be changed with the variation of inlet/outlet location due to the higher order acoustic mode in a high frequency in which the plane wave theory is not available. In this paper, the acoustic performance of reactive type expansion chamber with circular cross-section is analyzed by using the modified mode matching theory. The sensitivity analysis of four-pole parameters with respect to the location of inlet and outlet is also suggested to increase the acoustic performance. The acoustic power transmission coefficient is used as cost function, and the location of inlet and outlet is used as design variables. The steepest descent method and SUMT algorithm are used for optimization technique. Several results showed that the expansion chamber with optimally located inlet/outlet had better acoustic performance than concentric expansion chamber.

Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix (ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • In the case of designing an acoustic transducer for high power application, we usually aim to transfer the source electric energy to the output acoustic energy as large as possible. For this purpose, we should match the impedance of the power amplifier to the impedance combined with the acoustic transducer impedance and the radiation impedance. Especially if we have electrical source with almost zero impedance, we need improve the power factor of the acoustic transducer in the load. In this paper, we propose a broad band impedance matching method by the improvement of power factor, which applies ABCD matrix.

Application of Non-linear Acoustic Effect for Evaluation of Degradation of 2.25Cr-1Mo Steel (2.25Cr-1Mo 강의 열화도 평가를 위한 비선형 음향효과 응용법)

  • Choi, Y.H.;Jhang, K.Y.;Park, I.K.;Kim, H.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.170-176
    • /
    • 2002
  • Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degraded 2.25Cr-1Mo steel is investigated. Firstly, artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Secondly, ultrasonic nonlinear parameter was quantitatively measured by bi-spectrum and power spectrum. Nonlinear acoustic parameter from bi-spectrum was found to be clearly sensitive to the aging time.

A Comparison of Parameters of Acoustic Vowel Space in Patients with Parkinson's Disease (파킨슨병 환자의 음향 모음 공간 파라미터 비교)

  • Kang, Young-Ae;Yoon, Kyu-Chul;Lee, Hak-Seung;Seong, Cheol-Jae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.185-192
    • /
    • 2010
  • The acoustic vowel space has been used as an acoustic parameter in dysarthric speech. The aim of this work was to examine mathematical formulae for acoustic vowel space and to apply these to Korean speakers with idiopathic Parkinson's disease(IPD). Five acoustic parameters were chosen from earlier works and one new parameter was proposed, the pentagonal vowel space. The six parameters included triangular vowel space (3 area), irregular quadrilateral vowel space (4 area), irregular pentagonal vowel space (5 area), vowel articulatory index (VAI), formant centralization ratio (FCR) and F2i/F1u ratio (F2 ratio). An experimental group of 32 IPD patients(male:female=16:16) and a control group of twenty healthy people (male:female=8:12) participated in the study and repeated vowels (/a-i-u-e-o/) three times. A correlation analysis was performed among the six parameters, 2-way ANOVA was done with gender and groups as independent factors, and an independent sample t-test was conducted between the male and the female group as post hoc comparison. All parameters were highly correlated with each other and only the FCR showed a high negative correlation with the others. The results of ANOVA showed a significant difference in F2 ratio, 3 area, 4 area and 5 area between gender and in 4 area and 5 area between groups. For the male members of the two groups, significant statistical differences were found in all parameters whereas no such differences were found for the female members. These findings indicated that the vowel space of the female group was wider than the vowel space of the male group. These differences may have been caused by gender-specific speech styles rather than by patho-physiological mechanisms. We also claim that the pentagonal vowel space is better than the other vowel spaces at representing the disordered speech in natural speech situations.

  • PDF

A New Unified System of Acoustic Echo and Noise Suppression Incorporating a Novel Noise Power Estimation (새로운 잡음전력 추정 기법을 적용한 음향학적 반향 및 배경잡음 제거 통합시스템)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.680-685
    • /
    • 2009
  • In this paper, we propose a efficient noise power estimation technique for an integrated acoustic echo and noise suppression system in a frequency domain. The proposed method uses speech absence probability (SAP) derived from the microphone input signal as the smoothing parameter updating noise power to reduce the noise power estimation error resulted from the distortions in the unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm. Therefore, in the proposed approach, the smoothing parameter based on SAP derived from the input signal instead of echo-suppressed signal should stop updating noise power estimates during the distorted noise spectrum periods. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Room acoustic analysis in university classrooms using experimental results (실측을 통한 대학 강의실 음향 특성에 관한 연구)

  • Kim, Yeun-Seon;Song, Min-Ho;Park, In-Sun;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.493-502
    • /
    • 2007
  • Measurements of RT, EDT, $D_{50}$, $C_{50}$ and STI carried out in three different unoccupied University classrooms. For acoustic measurements, various sound sources are used (white noise, pistol shot, MLS and sweep signal). In this study, It found that interaction exists between sound source and place. Also there was high correlation between STI and various acoustic parameter.

  • PDF

A Statistical. Properties of Tensile Behaviors of STS304 Stainless Steel at Elevated Temperature and the Acoustic Emission (STS304 스테인리스강의 고온 인장거동의 통계적 특성과 음향방출)

  • Kwak, Myung-Kyu;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.68-74
    • /
    • 2002
  • The tensile tests to identify the statistical tensile properties and the acoustic emission characteristics were conducted for STS304 stainless steel at $600^{\circ}C,\;700^{\circ}C$. From tensile tests performed by constant cross head speed controls with 1mm/min, rates at each elevated temperature, the scatters were observed in tensile strength, reduction of area, elongation and the acoustic emission parameters. The effect of temperature on the scatter of tensile behavior was larger at $700^{\circ}C$. The distributions of tensile properties was well followed in 3-parameter Weibull. The AE counts and energy of the $700^{\circ}C$ specimens were smaller than the $600^{\circ}C$.

  • PDF

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.