• Title/Summary/Keyword: acoustic parameter

Search Result 418, Processing Time 0.03 seconds

A Study on the Underwater Target Detection Using the Waveform Inversion Technique (파형역산 기법을 이용한 수중표적 탐지 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Kim, Woo Shik;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.487-492
    • /
    • 2015
  • A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air (공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계)

  • Ahn, Hongmin;Jin, JaeHyeok;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

The Prosodic Changes of Korean English Learners in Robot Assisted Learning (로봇보조언어교육을 통한 초등 영어 학습자의 운율 변화)

  • In, Jiyoung;Han, JeongHye
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.4
    • /
    • pp.323-332
    • /
    • 2016
  • A robot's recognition and diagnosis of pronunciation and its speech are the most important interactions in RALL(Robot Assisted Language Learning). This study is to verify the effectiveness of robot TTS(Text to Sound) technology in assisting Korean English language learners to acquire a native-like accent by correcting the prosodic errors they commonly make. The child English language learners' F0 range and speaking rate in the 4th grade, a prosodic variable, will be measured and analyzed for any changes in accent. We compare whether robot with the currently available TTS technology appeared to be effective for the 4th graders and 1st graders who were not under the formal English learning with native speaker from the acoustic phonetic viewpoint. Two groups by repeating TTS of RALL responded to the speaking rate rather than F0 range.

Parametric Array Sonar System Based on Maximum Likelihood Detection (최대우도 검파에 기반한 파라메트릭 어레이 소나 시스템)

  • Han, Jeong-Hee;Lee, Chong-Hyun;Paeng, Dong-Guk;Bae, Jin-Ho;Kim, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the underwater communications, transmitted acoustic signal is corrupted by interference from multipath. A parametric array transducer is capable of radiating a narrow beam with very low sidelobe levels. In certain cases, the parametric array transducer can help the multipath problem. To improve the performance of the underwater communications, the statistical signal processing methods will be required. In the paper, the communication system using a parametric array transducer was demonstrated. To detect the received signal of the communication system based on the on-off keying, the maximum likelihood method using averaged signal for a particular window size is used. The communication system has GUI using LebVIEW which allows the user to change the parameter. The GUI can also be easily modified based on the characteristics of a parametric array transducer. The implemented system can effectively evaluate the performance of the parametric array transducer.

Development of Sound Quality Index with Characterization of BSR Noise in a Vehicle (자동차 BSR 소음특성과 음질 인덱스 개발)

  • Shin, Su-Hyun;Kim, Duck-Whan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.447-452
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle (BSR) are considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. The aim of this paper is to develop the integrated experimental method to systematically tackle the BSR problems in early stage of the vehicle development cycle by resolving these difficulties. To achieve this aim, the developed experimental method ought to include the following requirements: to find and fix the BSR problem for modules instead of a full vehicle in order to tackle the problem in the early stage of the vehicle development cycle; to develop the exciter system including the zig and road-input-signal reproducing algorithm; to automatically localize the source region of BSR; to develop sound quality index that can be used to assess the subjective responses to BSR. Also, the BSR sound quality indexes based on the Zwicker's sound quality parameters using a multiple regression analysis. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed for participants. On a basis of the computed sound metrics and jury test result, sound quality index is developed to represent the harsh of BSR noise. It is expected that the developed BSR detection system and sound quality indexes can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

  • PDF

Characteristics of Spatio-Temporal Parameters in Parkinson's Disese During Walking (보행 시 파킨슨병 환자의 시·공간적 지표의 특성)

  • Lee, Sung-Yong;Woo, Young-Keun;Shin, Seung-Sub;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study was to compare spatio-temporal parameters during walking between patients with idiopathic Parkinson's disease and a control group matched for age, height, and weight. Thirty-three subjects were included in this study. Fifteen normal subjects (age, $63.3{\pm}5.8$ yrs; height, $164.1{\pm}8.7$ cm; weight, $60.7{\pm}17.5$ kg) and eighteen patients (age, $64.0{\pm}7.7$ yrs; height, $164.7{\pm}7.3$ cm; weight, $63.6{\pm}7.7$ kg) participated in the study. The Vicon 512 Motion analysis system was used for gait analysis in each group during walking, with and without an obstacle. The measured spatio-temporal parameters were cadence, walking speed, stride time, step time, single limb support time, double limb support time, stride length, and step length. Results in stride length and step length, when walking without an obstacle, showed a significantly greater decrease in the patient group compared to the control group. During walking with an obstacle, the patient group showed a significantly greater decrease in the step length as compared to the control group. For the control group, there were significant decreases in parameters of cadence and walking speed and increases in parameters of stride time, step time, and single limb support time when walking with an obstacle. The patient group had lower cadence and walking speed and higher stride time, step time, and single limb support time during walking with an obstacle than in walking without an obstacle. These results suggest that patients with Parkinson's disease who walk over an obstacle can decrease cadence, stride length, and step length. Further study is needed, performed with more obstacles and combined with other external cues, such as visual or acoustic guides.

  • PDF

Design of a Helmholtz Resonator for Noise Reduction in a Duct Considering Geometry Information: Additional Relationship Equation and Experiment (형상 정보를 고려한 덕트 소음 저감용 헬름홀츠 공명기 설계: 추가 관계식과 실험)

  • Ryu, Hokyung;Chung, Seong Jin;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.459-468
    • /
    • 2014
  • An additional relationship equation is numerically obtained to increase the accuracy of the conventional equation for obtaining the resonant frequency of a resonator. Although the conventional equation is widely used in industry because of its simplicity, it does not provide enough information on the cavity or the neck of the resonator for noise reduction in a duct. Resonator designers have difficulty implementing resonator design owing to the uncertainty in geometry presented by the well-known formula for determining the resonant frequency. To overcome this problem, this work determines an approximate equation using results of numerical calculation. To this end, shape parameters of the neck and cavity of a resonator are defined, and an equation describing the relationship between them is derived by adjusting the peak frequency in the transmission loss curve of a resonator to its resonant frequency. The application and validity of the derived equation are investigated in a numerical simulation and an acoustic experiment, respectively.

Usefulness of Cepstral Peak Prominence (CPP) in Unilateral Vocal Fold Paralysis Dysphonia Evaluation (일측성 성대마비 환자 평가에서 Cepstral Peak Prominence의 유용성)

  • Lee, Chang-Yoon;Jeong, Hee Seok;Son, Hee Young
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.28 no.2
    • /
    • pp.84-88
    • /
    • 2017
  • Background and Objectives : The purpose of this study was to compare the usefulness of Cepstral peak prominence (CPP) with parameter of Multiple Dimensional Voice Program (MDVP) in evaluating unilateral vocal fold paraylsis patients with subjective voice impairment. Materials and Methods : From July 2014 to August 2016, 37 patients with unilateral vocal fold paralysis who had been diagnosed with unilateral vocal fold paralysis and had received two or more voice tests before and after the diagnosis were evaluated for maximum phonation time (MPT), MDVP and CPP. Respectively. Voice tests were performed with short vowel /a/ and paragraph reading. Results : The CPP-a (CPP with vowel /a/) and CPP-s (CPP with paragraph reading) of the Cepstrum were statistically negatively correlated with G, R, B, and A before the voice therapy. Jitter, Shimmer, and NHR of MDVP were positively correlated with G, R, B. Jitter, Shimmer, and NHR of the MDVP were significantly correlated with the Cepstrum index. G, B, A and CPP-a and CPP-s showed a statistically significant negative correlation and a somewhat higher correlation coefficient between 0.5 and 0.78. On the other hand, in MDVP index, there was a positive correlation with G and B only with Jitter of 0.4. Conclusion : CPP can be an important evaluation tool in the evaluation of speech in the unilateral vocal cord paralysis when speech energy changes or the cycle is not constant during speech.

  • PDF

Effects of Continuous Speech Therapy in Patients with Non-fluent Aphasia Using kMIT (kMIT를 이용한 비유창성 실어증 환자 음성 언어의 치료효과 연구)

  • Lee Ju Hee;Ko Myun Hwan;Kim Hyun Gi;Hong Ki Hwan
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.16 no.2
    • /
    • pp.158-164
    • /
    • 2005
  • Melody intonation therepy (MIT) is to improve the linguistic aspects of the verbal utterance for aphasic patients utilizing the intact right brain. It is applied to the aphasic patients with good comprehension, poor fluency, and little available speech are thought to be ideal candidates. The purpose of the study was to investigate the effects of Korean Melody intonation therapy (kMIT) in patients with non-fluent aphasia. Five male non-fluent aphasic patients were participated in this study. Average ages were 49.9 years old. Each therapy took 45-50minutes once a week for six months. Aphasic Screen lest (RISS) was used to assess language parameter such as Auditory comprehension, oral expression, reading, writing and calculation ability before and after kMIT. Mean of Length Utterance, verbal intelligibility and articulation disorder were assessed also. Computerized Speech Lab was used to assess the acoustic characteristics of aphasic patients before and after kMIT. The results are as follows : 1) Auditory comprehension, oral expression, reading, writing and calculation ability of the subjects increased after UH'. However, only oral expression showed significant difference (p<0.05). 2) Mean of Length Utterance of five patients generally increased after Un. 3) After kMIT, verbal intelligibility increased and showed significant difference (p<0.05). 4) Misarticulation rate generally decreased after m. 5) Voice Onset Time of the alveolar lenis /t/ and velar lenis /k/ gradually decreased after kMIT. 6) However, intonation pattern were increased gradually in yes'no question after kMIT.

  • PDF

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.