• Title/Summary/Keyword: acoustic parameter

Search Result 418, Processing Time 0.031 seconds

Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test (음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가)

  • Lee, Joon-Hyun;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

Sound Quality Analysis of Water Turbing Generator Noise using Zwicker Parameter (Zwicker 파라미터를 이용한 수차발전기 소음의 음질분석)

  • Kook, Joung-Hun;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.273-277
    • /
    • 2007
  • In case of the Hydraulic Turbine Dynamo operating for Waterpower Generation, it makes very huge and loud noises, and it influences bad effect physically as same as mentally to those people who are working inside of power plant, and brings the decline of an effective working efficiency. However, its evaluation method or measure about such noise reflects merely its physical attribute which is sensuous Loudness of the Noise itself, since the accumulation effect of Noise or the meaning connected with psychological response did not reflect, it is the actual state that a rational evaluation is unable to expect. Consequently, this Study has attempted to evaluate the Noise of Hydraulic Turbine Dynamo by analyzing the sound quality using Zwicker‘s Psychological Acoustic Parameter, after classification by its positions of the Noise occurring at Hydraulic Turbine Dynamo.

  • PDF

A Study on the Fuzzy-PID Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 퍼지-PID 심도 제어에 관한 연구)

  • 김현식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2000
  • In Underwater Flight Vehicle depth control system, the followings must be required. Firstly, It need robust depth control performance which can get over parameter variation, modeling error and disturbance. Secondly, It need no oveshoot phenomenon to avoid colliding with ground surface and obstables. Thirdly, It need continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, It need effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose the Fuzzy-PID depth controller with the control parameter interpolators. Simulation results show the proposed control scheme has robust and accurate performance with continuous control input.

  • PDF

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Comparison of the acoustical performance of auditoria by shapes using acoustic simulation and listening tests (시뮬레이션과 청감실험을 통한 공연장 형태별 음향성능 비교분석)

  • Chanwoo Kang;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.189-202
    • /
    • 2023
  • In this study, the acoustic performance was analyzed by architectural shapes of the hall. There are four architectural shapes of halls. They are rectangular, horseshoe, surround, and fan-shape. Eight acoustic parameters were used to determine the acoustic performance. These are RT60, EDT, C80, BQI, LF, Gmid, G125 and ITDG. First, measurement data of famous concert halls around the world were analyzed. The correlation coefficient R was obtained by regression analysis of the relationship between the subjective ranking of the halls and the acoustic parameters. It was found that BQI, G, and ITDG have higher correlation coefficients R. Also the average of acoustic parameters for each architectural shape were obtained. The total acoustic performance for each shape was calculated by using the correlation coefficient R as a weight for each acoustic parameters. As a result, rectangular halls and horseshoe halls showed good acoustical performances. Second, 3D models of each architectural shape were created and acoustic simulation had been performed. The simulation was performed by creating 3D models of each four shapes of concert halls with the same volume and sound absorption coefficient. Listening test was carried out using the sound source which is created from impulse responses of 3D model. As a result, rectangular hall and horseshoe hall showed the best performance however surround hall and fan-shaped hall showed relatively poor performance.

A Study on the Tool Fracture Detection Algorithm Using System Identification (시스템인식을 이용한 공구파손검출 알고리듬에 관한 연구)

  • Sa, Seung-Yun;Yu, Eun-Lee;Ryu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.988-994
    • /
    • 1997
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, digital image of time series sequence was acquired by taking advantage of optical technique. Mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR(auto regressive) model was selected for system model and fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, it was found that there was a system stability.

Optimum Monitoring Parameters for the Safety of Mechanical Seals (미캐니컬 씰의 안전운용 감시를 위한 최적 계측인자)

  • Soon-Jae Lim;Man-Yong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.214-219
    • /
    • 1997
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are generally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage, crack, breakage, fast and severe wear, excessive torque, and squeaking results in big problems. To identify abnormal phenomena on mechanical seals and to propose the proper monitoring parameter for the failure of mechanical seals, sliding wear experiments were conducted. Acoustic emission, torque, and temperature were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. Except for the initial part of every experiment, the variation of acoustic emission was well coincided with torque variation during the experiments. This study concludes that acoustic emission and torque are proper monitoring parameters for the failure of mechanical seals. The intensity of acoustic emission signals is measured in root mean square voltage. Temperature of sealing face will be used as a parallel parameter for increasing the reliability of monitoring system.

  • PDF