• Title/Summary/Keyword: acoustic field

Search Result 927, Processing Time 0.024 seconds

Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave (정재초음파를 이용한 유동중 미세 입자 위치 제어)

  • Cho, Seung-Hyun;Seo, Dae-Cheol;Ahn, Bong-Young;Kim, Ki-Bok;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • Using ultrasonic standing waves, micro particles submerged or flowing in fluid can be manipulated. Due to acoustic radiation force of ultrasound, particles are forced to move to pressure nodal or antinodal lines. In this work, we propose a method to control the position of micro particle in a flow by adjusting the frequency of the standing wave. To this end, standing wave field generation system including a few millimeter thick micro channel was established using an immersible ultrasonic transducer. The present generation system works valid in a frequency range between 2.0 MHz and 2.5 MHz. We observed the SiC particles in water moved to pressure nodal lines by the standing wave. The effect of the channel thickness and operating frequency was also investigated. Interestingly, it was shown that the operating frequency have a close relation with the location of the pressure nodal line. Consequently, it fan be said that the position of particle movement rail be controlled by adjusting the ultrasound frequency. The maximum range of the controllable position was about 261 micrometers under the given condition. The resulted observations reveal the possibility of various applications of the ultrasonic standing wave to the manipulation of particles submerged in a fluid.

Assessment of Field Application of Contaminated Sediment Removal Efficiency Using PVDF Combined Hybrid Tunnel Drainage (PVDF(Polyvinylidene Fluoride) 필름형 트랜스듀서 하이브리드 터널배수재에 대한 오염퇴적물 제거효율의 현장 적용성 평가)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.513-519
    • /
    • 2019
  • Typically, contaminated sediments cause clogging of the drain pipe, which increases the residual water pressure in the drain pipe; this study constructed a system for improving drainage efficiency of tunnels by reducing physical and chemical obstructions through ultrasonic energy generated by a PVDF film. The developed hybrid drainage system utilized a PVDF material film fused with an existing drainage tunnel and maintenance system resulting in the ability to initialize the reverse piezoelectric effect, which was evaluated through an on site application. In order to investigate the maintenance performance of the tunnel drainage system, contaminated sediments were simulated in a drainage pipe to test the effect of ultrasonic conditions on drainage efficiency in the laboratory. As a result of applying the developed portable equipment, the ultrasonic energy was generated for about 20 minutes resulting in a reduction of 74.62% of the contaminated sediments and improving drainage efficiency. From the tunnel, acoustic pressure measurements were taken to calculate the response rate while taking into account the laboratory results. In addition, PVDF film was attached to the transverse and longitudinal side of the drainage pipes where contaminated sediments occur most often in the field tunnel. these calculations show contaminant removal was 90% effective.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

Development of Smart Active Layer Sensor (II): Manufacturing and Application (스마트 능동 레이어 센서 개발 (II): 저작 및 적용 연구)

  • Lee, Young-Sup;Lee, Sang-Il;Kwon, Jae-Hwa;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.476-486
    • /
    • 2004
  • This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.

Distribution Characteristics of Fish Schools in the Yellow Sea and the East China Sea in the Spring of 1997 (1997 년 춘계의 동중국해 및 황해에 대한 어군의 분포특성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.241-248
    • /
    • 2002
  • The combined hydroacoustic and demersal trawl surveys to investigate the distribution characteristics of fish schools in the Yellow Sea and the East China Sea were carried out during the spring of 1997 by the training ship "Nagasaki Maru" of Nagasaki University. Fish samples were collected by bottom trawling from 9 trawl stations randomly selected in the survey area, and the species and length compositions of trawl catches are examined. Hydroacoustic data were collected by using a Furuno FQ-50 scientific echo sounder operating at 50KHz and the data stored in field were later processed in the laboratory. The results obtained can be summarized as follows :1. In the 9 trawl surveys conducted in the Yellow Sea and the East China Sea, 78 species including 80 species of fishes, 4 species of Cephalopoda and 6 species of Crustacea, were identified. The most abundant species in these stations were swimming crab(Portunus trituberculatus), Japanese horse mackere(Trachurus japonicus), redlip croaker(Larimichthys polyactis) and the catch per one hour in each station ranged 7.7 to 182.5 kg/hour. 2. The mean volume backscattering strength for the entire water column and the bottom layer of the 0-10 m from bottom friction were -74.6 ㏈ and -68.2 ㏈, respectively. That is, the mean volume backscattering strength for the bottom layer was 6.4 ㏈ higher than that for the entire water column 3. In the surveys during the spring of 1997, the geographical distribution characteristics of fish schools suggests a trend of decreasing fish abundance toward the coast area of Korea and the highest demersal concentrations appeared in waters between the Cheju Island and the Tsushima Island 4. The distribution density of fish school in the East China Sea and Yellow Sea during the 1997 acoustic survey were estimated to be 6.65$\times$10$^{-5}$ kg/㎥ in the entire water column and 2.86$\times$l0$^{-4}$ kg/㎥ in the bottom layer, respectively.pectively.

The Variation of Current by the Building of Artificial Upwelling Structure ( I ) (인공용승구조물 설치에 의한 유동변화 ( I ))

  • Kim, Dong-Sun;Hwang, Suk-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.301-306
    • /
    • 2006
  • In order to estimate the characteristics of water movements around artificial upwelling structure, current measurements were carried out along lines E-W and S-N on May 4th(neap tide} and May 30th(spring tide), 2006. In the study area, southeastward flow was dominant during the field observations, and the pattern of water movement in the upper layer above 30m depth was different from that in the lower layer below 30m depth Vertical flow(w-component} around the artificial structure area and western area was shown to be upward flow, but downward flow occurred in the southern, northern and eastern parts at the neap tide. At the spring tide, the ebb current along E-W line showed upwelling flow in the eastern part and western area and showed upwelling flow near the artificial structure area and downwelling flow far away that one. At the spring tide, upward flow was dominant along S-N line during the flood current Volume transport by upward flow was higher than that by downward flow. Volume transport by upward flow during ebb of neap tide was greater than during flood current of neap tide, but was reverse at the spring tide.

  • PDF