• Title/Summary/Keyword: acoustic field

Search Result 926, Processing Time 0.026 seconds

DEVELOPMENT OF UNEVEN FAN BY AERO-ACOUSTICS ANALYSIS & OPTIMIZATION METHOD (공력소음해석과 최적화 기법을 통한 비등간격 팬 개발)

  • Kim, J.S.;Kim, H.S.;Hyun, K.T.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Acoustic pressure field around the centrifugal fan is predicted by a aero-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using commercial code, while the acoustic waves generated inside the centrifugal fan and shroud are predicted by solving the far field acoustics analysis. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades with the shroud. Acoustic results is validated by experimental results This paper describes the influence of geometric parameters on the noise generation from the section of blades and shroud. One of the effective ways to reduce BPF noise is optimization method using Genetic Algorithm, which effectively minimize eccentricity, is suggested. New improving design was developed by optimization method.

Control of Flow-Induced Noise from a Round Jet using Active Excitation (능동 가진을 이용한 원형 제트에서의 유동 소음 제어)

  • Kim, Jung-Woo;Cha, Seong-Dae;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.798-803
    • /
    • 2003
  • The objective of the present study is to investigate the changes in the acoustic source characteristics and far-field noise propagation in an incompressible round jet at Re=10000 for single-frequency excitations using large eddy simulation and Lighthill acoustic analogy. We apply excitations at a frequency corresponding to the jet-column mode ($St_{D}=0.85$) or maximum growth rate in the shear layer ( $St_{\theta}=0.017$ ). The acoustic source derived from the Lighthill acoustic analogy is the second spatial derivative of the Reynolds stresses. In the case of $St_{D}=0.85$, vortex ring and large scale structures are dominant sources, whereas in the case of $St_{\theta}=0.017$, the main sources are located at an upstream position along the shear layer than in the uncontrolled case. Also, the far-field noise propagates along the axial direction due to excitation.

  • PDF

Computer Simulation for Noise Source Identification and Application to Vehicle Using Complex Acoustic Intensity Method (복소음향 인텐시티법을 이용한 소음원검출의 시뮬레이션 및 실차응용)

  • 오재응;김상헌;안지훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-171
    • /
    • 1997
  • Sound intensity distributions and energy flow in the near field of dipole source system and flat plate were investigated. First, the effectiveness of complex acoustic intensity was proved by using mathmatical and experimental methods in order to inden- tify noise sources and transmission paths of dipole field which is effected by the presence of neighbouring coherent sources. Next, analytical complex acoustic intensity method was discussed and the characteristics and energy flow of sound induced from the plate are clarified. The velocity of plate obtained from Finite Element Method was used for calculation of complex acoustic intensity in the near field. Finally experimental complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for the identification and the reduction of vibration and noise.

  • PDF

FORMULATION OF NEAR AND FAR ACOUSTIC FIELD FROM AN INCOMPRESSIBLE FLOW FLRCTUATION AROUND THE RIGID WALL

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.59-62
    • /
    • 1996
  • A numerical study of a two-dimensional acoustic field is carride ort for a spinning vortex pair located neat a wall to investigate the effect of the wall from the spinning quadrupole source in unsteady vortical flows. Based on the known incompressible flow field, the perturbed compressible acoustic terms derived from the Euler equations are calculated. Non-reflecting boundary conditions on the free field and the solid boundary conditions are developed for a generalized curvilinear coordinates system to investigate the effect of a curced wall. It is concluded that the sound generated by the quadrupole sources of unsteady vortical flows in the presence of a flat wall or a circular cylinder can be calculated by using the source terms of hydrodynamic flow fluctuations in both near and far acoustic fields simultaneously.

  • PDF

Broadband Acoustic Power Radiation from a Finite Plate Excited by Random Forces in a Subsonic Flow Field

  • Lee, Hyo-Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.27-37
    • /
    • 2000
  • This paper presents a simplified analytical formulation for computing acoustic power radiation from a rectangular plate exposed to random forces such as turbulent boundary layer pressure fluctuations and arbitrary mechanical force in a subsonic flow field. The expression for the acoustic power is derived using modal expansion method and light fluid loading is assumed on the plate. In order to simplify the formulation for acoustic power due to combined excitations of mechanical forces and turbulent pressures, it is assumed that the structural damping of the plate is small and excitations are broadband random forces having frequency spectra above the convective coincidence. Under these assumptions, an approximate solution for the broadband acoustic power radiation from a plate excited by both turbulent pressures and arbitrary mechanical forces is obtained and evaluated considering the effect of modal coupling on the radiated acoustic power. An efficient method is also suggested to compute modal acoustic impedance in a moving fluid medium by using averaged Green function.

  • PDF

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

A hybrid algorithm of underwater structure vibration and acoustic radiation-propagation in ocean acoustic channel

  • Duan, Jia-xi;Zhang, Lin;Da, Liang-long;Sun, Xue-hai;Chen, Wen-jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.680-690
    • /
    • 2020
  • In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.

Fast Convolution Method using Psycho-acoustic Filters in Sound Reverberator (잔향 생성기에서 심리 음향 필터를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1037-1041
    • /
    • 2007
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral psycho-acoustic filters considering masking effects are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for realtime implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

  • PDF

Aeroacoustic Tonal Noise Prediction of Cross-Flow Fan by a Hydrodynamic-Acoustic Splitting Method (유동-음향 분리 기법에 의한 횡류홴의 공력 소음 예측)

  • Cho, Yong;Moom, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1869-1874
    • /
    • 2004
  • Acoustic pressure field around the cross-flow fan is predicted by a hydrodynamic-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using an unstructured finite-volume method on the triangular meshes, while the acoustic waves generated inside the cross-flow fan are predicted by solving the perturbed compressible equations(PCE) with a 6th-order compact finite difference method. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades wakes with the stabilizer, which then are reflected from the rear-guider and mainly propagate towards the fan inlet. Also, a directivity of BPF noise predicted by the PCE is noticeably different from that of the FW-H equations, in which a fan casing effect cannot be included.

  • PDF

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF