• Title/Summary/Keyword: acoustic emission (AE)

Search Result 825, Processing Time 0.02 seconds

Study on Creep Life Prediction by Initial Strain Method for Friction Welded Joints of Heat Resisting Steels (내열강 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구)

  • 김헌경;김일석;이연탁;공유식;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels (SUH3-SUH35). various life prediction method such as LMP (Larson_miller Parameter) and ISM (initial strain method) were applied. The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep lie (tr, hr) prediction equation by initial strain (${\varepsilon}_0$, %) under any creep stress ($\sigma$, MPa) at any high temperature (T, K) was developed as follows: $t_r={\alpha}{\varepsilon}_0^{\beta}{\sigma}^{-1}$ where, ${\phi}=16: {\alpha}=10^{51.412-0.104T+5.375{\times}10^5T^2}$, $ {\beta}=-83.989+0.180T-9.957{\times}10^{-5}T^2,{\phi}=20:$ ${\alpha}=10^{69.910-0.146T+7.744{\times}10^{-5}T^2$, ${\beta}=-51.442+0.105T-5.595{\times}10^{-5}T^2$ for SUH3-SUH35 friction weld of =16mm and 20mm, respectively.

  • PDF

Experimental study of rockburst under true-triaxial gradient loading conditions

  • Liu, Xiqi;Xia, Yuanyou;Lin, Manqing;Benzerzour, Mahfoud
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.481-492
    • /
    • 2019
  • Due to the underground openings, the tangentially concentrated stress of the tunnel remains larger at excavation boundary and decreases toward the interior of the surrounding rock with a certain gradient. In order to study the effect of different gradient stress on rockburst, the true-triaxial gradient and hydraulic-pneumatic combined test apparatus were carried out to simulate the rockburst processes. Under the different gradient stress conditions, the rock-like specimen (gypsum) was tested independently through three principal stress directions loading--fast unloading of single surface--top gradient and hydraulic-pneumatic combined loading, which systematically analyzed the macro-mesoscopic damage phenomena, force characteristics and acoustic emission (AE) signals of the specimen during rockburst. The experimental results indicated that the rockburst test under the gradient and hydraulic-pneumatic combined loading conditions could perfectly reflect the rockburst processes and their stress characteristics; Relatively high stress loading could cause specimen failure, but could not determine its mode. The rockburst under the action of gradient stress suggested that the failure mode of specimen mainly depended on the stress gradient. When the stress gradient was lower, progressive and static spalling failure occured and the rockburst grades were relatively slight. On the other hand, shear fractures occurred in rockbursts accounted for increasingly large proportion as the stress gradient increased and the rockburst occurred more intensely and suddenly, the progressive failure process became unconspicuous, and the rockburst grades were moderate or even stronger.

The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite (황등화강암을 이용한 암석의 손상기준 결정방법 연구)

  • Jang, Bo-An;Ji, Hoon;Jang, Hyun-Shic
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • Although various methods for determination of damage threshold in rock have been suggested, clear damage thresholds were determined by some methods, but different thresholds were measured by other methods. We determined the damage thresholds in Hangdeung granite using all the methods suggested, and investigated the best methods, applicability and errors of each method. The crack initiation threshold and the crack damage threshold which are important in investigation of characteristics of crack development and failure were verified by field strength ratio method and long-term constant load test. The crack closure stress and the crack initiation stress were 57.5 MPa and 77.6 MPa, and the most exact values were yielded by crack volumetric strain. The secondary crack initiation stress was 90.6 MPa and AE event count and AE event count rate were the effective methods. The volumetric stiffness, AE event count and AE event count rate were the most effective methods for determination of crack coalescence threshold and crack coalescence stress was 110.3 MPa. The crack damage stress was 127.5 MPa and was measured correctly by volumetric stiffness and AE event count rate. The ratio between crack initiation stress and uniaxial compressive strength was 0.47 which was very similar with the FSR value of 0.46. The ratio between crack damage stress and uniaxial compressive strength was almost the same as the ratio between long-term strength and uniaxial compressive strength, indicating that the crack initiation stress and the crack damage stress measured were correct.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Wavelet Analysis of Elastic Wave for Wall Thinned High-Pressure Service Pipes (감육을 가지는 고압배관에 대한 탄성파의 Wavelet해석)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Lee, Si-Yoon;Nam, Ki-Woo;Do, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.1-8
    • /
    • 2005
  • We studied on the nondestructive evaluation of the elastic wave signals of locally wall thinned straight pipe. Wavelet transform was applied for the time-frequency analysis of waveforms obtained by fracture wave detector due to the dropping steel ball. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the shape of local wall thinning at each frequency. In this study, comparison by wavelet transform of the AE signals and monotonic bending tests without internal pressure are conducted on 1.91 inch diameter full-scale carbon steel pipe specimens. As the results of tests, fracture behaviors could be shown by the characteristic of mechanical strength of locally wall thinned pipes and the waveforms could be evaluated for the integrity insurance of the piping system according to the length and depth range of the deffeted shape pipes in the real field.

  • PDF

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

A Study on the Failure Characteristic of Laminated Composites Joint Containing Two Holes in Series or Parallel (복합적층판의 직병렬 유공 접합부의 파손연구)

  • Kwan-Hyung Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.93-102
    • /
    • 1995
  • A series of test was performed by measuring the failure strength and the failure mode of fiber reinforced composite laminates joint containing two holes in Series or Parallel. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate with W/d(Side distance ratio) 4.0 and E/d(Edge distance ratio) 3.0 has the full bearing strength and are preferable in case of the good efficiency in two series hole. Comparisons were made between testing results and predicting values of the FEM model. Good agreements were fecund between them except the case of $E/d=2{\sim}3$. In the case of $G_h{\geq}3.0d$ and $G_v{\geq}3.0d$ since the interaction coefficients between two parallel holes and between two series holes were small, holes can be treated as independent. The Acoustic Emission(AE) and SEM method were utilized to find out the initial defects, damage and the fracture mechanism.

  • PDF

An Experimental Study on the Fracture Behavior for Flash Butt Welding Zone (Flash Butt 용접부의 파괴거동에 관한 실험적 연구(I))

  • 김용수;신근하;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • Objective of this research is to evaluate fracture behaviors of fresh-butt welded metal by the acoustic emission technique. The specimens used are medium carbon steel(SM45C), mild steel (SS41) and stainless steel(SUS304), which have different weldability. The similar welding and dissimilar welding processes are considered, in the former SM45C, SS41 and SUS304 are used, in the later the following metals are used SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The characteristics of fracture in weld metal are eshmated by the tension test with nominal speciemns, the fracture toughness test with compact tension specimens and fractography analysis. The results of tension test show for base metals and similar welding materials that the yield strength and ultimate strength of similar welding materials are increased, the elongation of those are decreased. The weldability of SUS304 is better than that of SM45C and SS41 In similar welding materials. Mechanical properties of dissimilar welding mateiiths we lower than those of similar welding materials. In dissimilar welding materials, the weldability of SM45C and SUS304 is better than that of SM45C and SS41, and also weidability of SS41 and SUS304 is better than SS41 and SM45C. Comparing mechanical properties with AE counts, it is found that AE conuts appeared on a small before the limit load of elasticity(P$_{e}$), and apper greatly near yield strength region in tension test. These results could contribute to the safety analyses and the evaluation of strength for welding structure.e.

  • PDF

Effect of Specimen Geometry on Bending and Tensile Strength of Material Used in Dissimilar Joints (이종 접합재의 굽힘 및 인장강도에 미치는 시험편 형상의 효과)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.341-346
    • /
    • 2010
  • The effect of specimen geometry on the bending and tensile strengths of dissimilar joints ($\beta-Si_3N_4/S45C$) with copper interlayers was evaluated. The average bending strength of specimens with circular cross sections was higher than that of specimens with rectangular cross sections. The crack initiation stress ($\sigma_i$) was successfully determined by the acoustic emission (AE) method and was approximately 60~80% of the bending strength. The residual stresses near the interfaces on the ceramic side were measured by X-ray diffraction before conducting the bending test. The bending strength and the crack initiation stress decreased with an increase in the residual stresses. The effect of the bending strain component was evaluated by the tensile testing; the tensile strength decreased with an increase in the bending strain component and was approximately 80% of the bending strength.

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF