• Title/Summary/Keyword: aconstacyclic codes

Search Result 1, Processing Time 0.019 seconds

ON A CLASS OF CONSTACYCLIC CODES OF LENGTH 2ps OVER $\frac{\mathbb{F}_{p^m}[u]}{{\langle}u^a{\rangle}}$

  • Dinh, Hai Q.;Nguyen, Bac Trong;Sriboonchitta, Songsak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1189-1208
    • /
    • 2018
  • The aim of this paper is to study the class of ${\Lambda}$-constacyclic codes of length $2p^s$ over the finite commutative chain ring ${\mathcal{R}}_a=\frac{{\mathbb{F}_{p^m}}[u]}{{\langle}u^a{\rangle}}={\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}+{\cdots}+u^{a-1}{\mathbb{F}}_{p^m}$, for all units ${\Lambda}$ of ${\mathcal{R}}_a$ that have the form ${\Lambda}={\Lambda}_0+u{\Lambda}_1+{\cdots}+u^{a-1}{\Lambda}_{a-1}$, where ${\Lambda}_0,{\Lambda}_1,{\cdots},{\Lambda}_{a-1}{\in}{\mathbb{F}}_{p^m}$, ${\Lambda}_0{\neq}0$, ${\Lambda}_1{\neq}0$. The algebraic structure of all ${\Lambda}$-constacyclic codes of length $2p^s$ over ${\mathcal{R}}_a$ and their duals are established. As an application, this structure is used to determine the Rosenbloom-Tsfasman (RT) distance and weight distributions of all such codes. Among such constacyclic codes, the unique MDS code with respect to the RT distance is obtained.