• Title/Summary/Keyword: acidification of soils

Search Result 43, Processing Time 0.035 seconds

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

Impact of Acidification on the Solubility of Metal Species in Asian Desert Dusts: Results from Laboratory Experiments (산성화 과정이 황사입자 내 금속성분의 용해도에 미치는 영향: 실험실 연구결과)

  • Sim, Soo-Young;Park, Seung Shik;Kim, Deok-Rae;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.64-73
    • /
    • 2013
  • Because some particulate matter emission sources may inherently produce soluble species, or some soluble species may be produced during atmospheric transport, it is important to understand the origin of a particles's solubility when water-soluble tracers are used in source apportionment studies. Laboratory experiments were performed on three types of soils (Mongolia grassland, Mongolia desert, and Korean rural soils), to study the impact of acidification by nitric acid vapor on the solubility of metals in the soils. To achieve this goal, concentrations of water-soluble metals (Na, Mg, Al, K, Ca, Mn, and Fe) in the soils measured before and after acidification. Contributions of concentrations of water-soluble metal species before and after acidification attack to their total concentrations varied little with soil type. Concentrations of water-soluble Mg, Al, K, Ca, Mn, and Fe from the soils after interaction with nitric acid vapor increased, with significant increases in soluble Ca and Mn for all soil types suggesting soil acidification enhances the amount of leachable metal species in soil dust. There was little increase in water-soluble Na and K after acidification for each soil type. This experiment demonstrates that quantities of water-soluble metal species in particulate matter are produced under high gaseous nitric acid conditions.

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF

Effects of Soil Acidification on Growth of Impatiens balsamina L. and Tagetes patula L. Plants (토양산성화가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 생장에 미치는 영향)

  • 김학윤
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • To investigate the effects of soil acidification on growth of Impatiens balsamina L. plants were transplanted to acidified soils with H$_2$SO$_4$ solution. The concentrations of soluble Ca, Mg, K, Al and Mn in the acidified soils increased with increment of H$^{+}$ addition to the soil. In both species, the plant height and root length were inhibited by soil acidification, showing much severer inhibition in Impatiens balsamina L. than in Tagetes patula L., As the soil pH decreases, the growth of underground parts decreased greatly than that of above ground parts in both species. Total dry weight decreased with increased Al concentration as well as lowered soil pH in both plants. There was a strong positive correlation between relative total dry weight and molar (Ca+Mg+K) / Al ratio of the soil. The results suggest that molar(Ca+Mg+K)/ Al ratio of the soil may be useful indicator for assessing the critical load of acid deposition in herb species.s.

  • PDF

Tree Ring Ca/Al as an Indicator of Historical Soil Acidification of Pinus Densiflora Forest in Southern Korea

  • Lee, Kwang-Seung;Hung, Dinh Viet;Kwak, Jin-Hyeob;Lim, Sang-Sun;Lee, Kye-Han;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • BACKGROUND: Soil acidification, which is known to be one of the reasons of forest decline, is associated with decreases in exchangeable Ca and increases in Al concentration, leading to low Ca/Al ratio in soil solution. As tree rings are datable archives of environmental changes, Ca/Al ratios of annual growth ring may show decreasing pattern in accordance with the progress of soil acidification. This study was conducted to investigate Ca/Al pattern of Pinus densiflora tree ring in an attempt to test its usefulness as an indicator of historical soil acidification. METHODS AND RESULTS: Three P. densiflora tree disks were collected from P. densiflora forests in Jeonnam province, and soil samples (0-10, 10-20, and 20-30 cm in depth) were also collected from the tree locations. Soils were analyzed for pH and exchangeable Ca and Al concentrations, and Ca/Al was calculated. Annual growth rings formed between 1969 and 2007 were separated and analyzed for Ca/Al. Soil Ca/Al was positively (P<0.01) correlated with soil pH, suggesting that soil acidification decreased Ca while increasing Al availability, lowering Ca/Al in soil solution. The Ca/Al of tree rings also showed a decreasing pattern from 18.2 to 5.5 during the period, and this seemed to reflect historical acidification of the soils. CONCLUSION(s): The relationship between soil pH and Ca/Al and the decreasing pattern of Ca/Al of tree ring suggest that Ca/Al of tree ring needs to be considered as a proxy of the progress of soil acidification in P. densiflora forest in southern Korea.

Short-term Effect of Phosphogypsum on Soil Chemical Properties

  • Chung, Jong-Bae;Kang, Sun-Chul;Park, Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.317-324
    • /
    • 2001
  • Short-term effect of phosphogypsum on soil properties including acidification, salinity and metal availability were investigated under laboratory and field conditions. Phosphogypsum and mixtures of phosphogypsum and compost were added to soil and incubated in a laboratory condition with 15% moisture content. Phosphogypsum treatments were 2.5 and 5.0 g/kg soil and in the treatments of phosphogypsum and compost mixture 10 g of compost was added additionally. After the 30 days of incubation, an additional phosphogypsum and/or compost were added to the remaining soils at the same rates of the first treatments. pH, electrical conductivity, and available hazardous elements were measured periodically during the incubation. Field experiment was conducted in a plastic film house of mellon with four treatments of phosphogypsum and compost mixtures - 25+125, 50+125, 50+250 and 100+250 kg/165 $m^2$. pH, electrical conductivity, and hazardous elements in soil and total hazardous elements in leaf were measured. In the laboratory experiment, after 30 days of the first phosphogypsum application, soil pHs were lowered by 0.7-0.8 units. After the second treatment of phosphogypsum 0.2 units of additional acidification occurred. However, acidification was not observed in the soils treated with mixtures of phosphogypsum and compost. In the laboratory experiment, phosphogypsum treatments increased electrical conductivity very significantly. In field experiment, pH and electrical conductivity of soils treated with phosphogypsum were nearly the same as those of soil not treated with phosphogypsum. Since soil condition in the field study was an open system, the free acids and salts derived from phosphogypsum could be diffused down with water leaching through the soil profile and then any significant acidification or salt accumulation in the topsoil could not be observed. In both laboratory and field experiments, levels of available hazardous elements in soils treated with phosphogypsum were quite low and not different from the levels found in the control soil. Results obtained from this study suggest that application of phosphogypsum at appropriate rates on agricultural land appears of no concern in terms of acidity, salinity and hazardous element content of soil.

  • PDF

Growth Decline of Pitch Pine Caused by Soil Acidification in Seoul Metropolitan Area (首都圈地域에서 土壤의 酸性化에 의한 리기다소나무의 生長 減少)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.287-297
    • /
    • 1994
  • To elucidate the cause of growth decline of pitch pine (Pinus rigida) in Seoul, tree density, tree age and physico-chemical properties of soils were investigated at 33 sites of pitch pine forests in metropolitan Seoul, its vicinity and rural areas. The physical properties of soils except for soil texture in Seoul did not differ from those in rural areas. pH values, base saturation, and Ca and Mg contents of soils in Seoul, however, were significantly lower than those in suburbs and rural areas. In contrast, soluble Al and $S0_4^{2-}-S$ contents in Seoul were higher than those in rural areas. Low pH of forest soils in Seoul and suburbs seems to be caused by acid deposition. According to multiple regression analysis, growth of pitch pine in Seoul was affected by several factors in the following order: soil bulk density < Al content of soils < tree density < Mg contents of soil < tree age. We concluded that the acidification of forest soil can be a predisposing factor for the growth decline of pitch pine in metropolitan areas.

  • PDF

Distribution of $NO_3\;^-,\;SO_4\;^{2-}$ and Heavy Metals in Some Urban-forest Soils of Central Korea (중부 지역 도시 자연녹지 토양중 $NO_3\;^-,\;SO_4\;^{2-}$ 및 중금속 분포)

  • Kim, Kye-Hoon;Park, Soon-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.351-357
    • /
    • 2000
  • This study was carried out to find out characteristics and contamination status of the urban-forest soils. Both topsoil (0-20 cm) and subsoil (40-60 cm) samples were collected from Namsan, Changdeok-palace, Seongjusan and Odaesan (control). The samples were analyzed for physicochemical properties, heavy metal (Cd, Cu, Pb, Zn) and anion $(NO_3\;^-,\;SO_4\;^{2-})$ contents. Soil pH of Odaesan was the highest followed by Namsan, Changdeok-palace and Seongjusan. The anion concentrations of the soil samples were in the order of Namsan, Seongjusan > Changdeok-palace > Odaesan. The relationships between soil pH and the anion concentrations showed highly significant negative correlation, which indicated acidification of soil due to air pollutants such as $NO_3\;^-$ and $SO_4\;^{2-}$ was going on. The heavy metal contents of the soils of urban-forest were higher than those of control. Heavy metal contents in the topsoil were higher than those in the subsoil. Since urban-forest soils were quite vulnerable to acidification and heavy metal accumulation due to chronic exposure to air pollutants such as automobile exhaust, a comprehensive countermeasure not to deteriorate urban-forest ecology must be prepared in the near future.

  • PDF

Effects of Soil pH on the Growth and Antioxidant System in French Marigold (Tagetes patula L.) (토양 pH가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향)

  • Kim, Jeung-Bea;Cho, Hyun-Je;Kim, Hak-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.348-352
    • /
    • 2007
  • To investigate the effects of soil pH on plants, the seedlings of french marigold (Tagetes patula L.) was transplanted into the soils acidified with $H_{2}SO_{4}$ solutions (pH 5.3, 4.5, 3.9, 3.5). The level of malondialdehyde was significantly increased by soil acidification. As the pH levels decreased from 5.3 to 3.5, the contents of dehydroascorbate and oxidized glutathione of the plant were significantly increased. The antioxidative enzyme activities of the plant affected by soil acidification were increased as the pH decreased.

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.