• Title/Summary/Keyword: acid-resistance

Search Result 1,930, Processing Time 0.026 seconds

Polarization Resistance of (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ Air Electrode Synthesized by Glycine-Nitrate Process (Glycine-Nitrate 법으로 제조한 (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ 공기극의 분극저항)

  • Moon, Ji-Woong;Lim, Yong-Ho;Oh, You-Keun;Lee, Mi-Jai;Choi, Byung-Hyun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.800-807
    • /
    • 2005
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$, for low temperature SOFC was prepared by the Glycine-Nitrate synthesis Process (GNP). Characteristics of the synthesized powders were studied with controlling the pH of a precursor solution. Highly acidic precursor solution increased a perovskite forming temperature. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with H+ insead of alkaline earth cations. A lack of bond between cations and glycine resulted in selective precipitation of the elements during evaporation of the precursor solution. In case of using precursor solution with pH %2\~3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}{\cdot}cm^2\;and\;0.16{\Omega}{\cdot}cm^2$, respectively.

Effect of Operating Conditions and Recovery of Water Back-washing in Spiral Wound Microfiltration Module Manufactured with PVDF Nanofibers for Water Treatment (수처리용 PVDF 나노섬유 나권형 정밀여과 모듈에서 운전조건의 영향과 물 역세척 회복)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.180-190
    • /
    • 2015
  • PVDF (polyvinylidene fluoride) nanofiber has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. Flat membranes with 0.3 and $0.4{\mu}m$ pore size respectively, were manufactured by PVDF nanofiber, and then each spiral wound module was prepared with them. A woven paper was not included in preparing the module with $0.3{\mu}m$ pore size; however, it was included the module with $0.4{\mu}m$ pore size. The permeate fluxes and rejection rates of the two modules were compared using pure water and simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing. In addition, the effect of flow rate and trans-membrane pressure on treatment efficiency and filtration resistance were investigated for the spiral wound module with $0.4{\mu}m$ pore size.

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.

Amino Acid and Phenolic Contents in lilfected Leaves of Rice in Relation to Adult - Plant Resistance to Leaf Blast (잎도열병에 대해 성체식물저항성을 지닌 벼의 감염엽에서 아미노산과 페놀화합물의 함량)

  • Kim Ki Deok;Hwang Byung Kook
    • Korean Journal Plant Pathology
    • /
    • v.3 no.1
    • /
    • pp.3-7
    • /
    • 1987
  • Ethanol-soluble amino acids and phenolics in healthy and blast-infected leaves of the susceptible rice cultivar Nakdong and adult-plant-resistant cultivar Dobong were quantitatively analyzed, At the 3 days after inoculation, the levels of soluble amino acids and phenolics in the infected fifth and eighth leaves of the two cultivars ere similar to those of comparable healthy controls. As blast lesions appeared on the leaves at the 5 days after inoculation, the soluble amino acids and phenolics began to increase. At the 7 days after inoculation, the levels of amino acids and phenolics were about 1.5-3 times more than those in healthy controls at the five-and eight leaf stages. The adult-plant-resistant cultivar Dobong showed higher amounts of soluble amino acids and phenolics in both healthy and infected fifth and eighth leaves than did the susceptible cultivar Nakdong, although Dobong was less infected by Pyricularia oryzae than Nakdong, The pronounced increases in amino acids and phenolics in rice leaves of the cultivar Dobong during the blast infection may play an important role in the expression of adult-plant resistance to blast.

  • PDF

Characteristics of Antimicrobial Susceptibility of Enterobacter Species (Enterobacter균종의 항균제 감수성의 본태)

  • Kim, Sang-Woon;Lee, Sang-Hwa;Kim, Jung-Wan;Seol, Sung-Yong;Cho, Dong-Taek
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 1987
  • A total of 58 strains of Enterobacter species isolated from clinical specimens at Kyungpook National University Hospital in Taegu and Yonsei University Hospital in Seoul were tested for the molecular characterization to investigate the nosocomial infection through the study of R plasmids which might spread among Gram negative organisms regardless of their originated strains. All strains resistant to ampicillin, cefoxitin and cephalothin but susceptible to moxalactam were subjected to the further test for the determination of in detail MIC value against 23 drugs of common use including beta-lactam antibiotics and R plasmid profile analysis. The reistance frequency of strains against carbenicillin (53.4%) was similar to those against chloramphenicol, tobramycin, and sulfisomidine. Though the MIC values of resistance criteria against ceftazidime, aztreonam, imipenem, and norfloxacine in NCCLS manual were not available but MIC ranges of strains tested were very low. There were differences in patterns and frequencies of resistance between the strains isolated in Seoul and Taegu isolates. Seoul isolates showed a tendency of higher multiplicity of resistance than those of Taegu isolates. The resistances against cefoxitin, cephalothin, cefoperazone, cefotaxime, nalidixic acid, and rifampin were not conferred to the conjugally transferable R plasmid. The approximate molecular size of conjugally transferable R plasmids ranged 30 to 151 megadalton, and one or 2 to 3 R plasmids were identified in each transconjugants.

  • PDF

Crosstalk of Zn in Combination with Other Fertilizers Underpins Interactive Effects and Induces Resistance in Tomato Plant against Early Blight Disease

  • Awan, Zoia Arshad;Shoaib, Amna;Khan, Kashif Ali
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.330-340
    • /
    • 2019
  • The present study was undertaken to evaluate the integrated effect of zinc (Zn) with other nutrients in managing early blight (EB) disease in tomato. A pot experiment was carried out with basal application of the recommended level of macronutrients [nitrogen, phosphorus and potassium (NPK)] and micronutrients [magnesium (Mg) and boron (B)] in bilateral combination with Zn (2.5 and 5.0 mg/kg) in a completely randomized deigned in replicates. Results revealed that interactive effect of Zn with Mg or B was often futile and in some cases synergistic. Zn with NPK yield synergistic outcome, therefore EB disease was managed significantly (disease incidence: 25% and percent severity index: 13%), which resulted in an efficient signaling network that reciprocally controls nutrient acquisition and uses with improved growth and development in a tomato plant. Thus, crosstalk and convergence of mechanisms in metabolic pathways resulted in induction of resistance in tomato plant against a pathogen which significantly improved photosynthetic pigment, total phenolics, total protein content and defense-related enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL)]. The tremendous increase in total phenolics and PAL activity suggesting their additive effect on salicylic acid which may help the plant to systemically induce resistance against pathogen attack. It was concluded that interactive effect of Zn (5.0 mg/kg) with NPK significantly managed EB disease and showed positive effect on growth, physiological and biochemical attributes therefor use of Zn + NPK is simple and credible efforts to combat Alternaria stress in tomato plants.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.

Characterization of plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolated from companion animals (반려동물 유래 장내세균에서 plasmid 매개 퀴놀론 내성 유전자의 특성)

  • Cho, Jae-Keun;Kim, Jeong-Mi;Kim, Hwan-Deuk;Kim, Kyung-Hee;Lim, Hyun-Suk;Yang, Chang-Ryoul
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • The aim of this study was to investigate the prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) gene in 79 Enterobacteriaceae isolated from dogs and cats. Of 79 isolates, PMQR genes were found in 10 (12.7%) isolates, including aac(6')-lb-cr, qnrB, qnrS and qnrA detected alone or in combination in 8 (10.1%), 4 (5.1%), 2 (2.5%) and 1 (1.3%) isolates, respectively. Interestingly, two qnrS genes were detected in nalidixic acid and ciprofloxacin susceptible isolates. Extended-spectrum ${\beta}$-lactamase (ESBL) was detected in 90% (9 isolates) of PMQR positives isolates. Among ESBL genes, CTX-M, TEM and SHV were detected in 9, 8 and 3 isolates, respectively. Almost all PMQR genes were detected in co-existence with ESBL genes. All PMQR positives isolates were multidrug resistance (i.e. resistant to five or more antibiotics). qepA, OXA and CMY-2 genes were not found. The six transconjugants were obtained by conjugation experiment. The aac(6')-lb-cr, qnrB and qnrS were co-transferred with CTX-M, TEM and/or SHV, whereas qnrA was not observed among transconugants. This is the first report of the presence of aac(6')-lb-cr and qnrA gene among Enterobacteriaceae isolates from dogs in Korea. The prudent use of antimicrobials and continuous monitoring for companion animals are required.

Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δpsm Mutants and a Complementation Study of Δpsm Mutants Using Synthetic Phenol-Soluble Modulins

  • Song, Hun-Suk;Bhatia, Shashi Kant;Choi, Tae-Rim;Gurav, Ranjit;Kim, Hyun Joong;Lee, Sun Mi;Park, Sol Lee;Lee, Hye Soo;Joo, Hwang-Soo;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.115-122
    • /
    • 2021
  • Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmβ, and Δpsmαβ. These mutants exhibited increased β-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased N-acetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmβ mutants, treatment of Δpsmα with PSMα1-4 and Δpsmβ with PSMβ1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and β2 had an inhibiting effect on biofilms in Δpsmα; however, β1 showed an enhancing effect on biofilms in Δpsmβ. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.

Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo

  • Leong, Sui Sien;Lihan, Samuel;Toh, Seng Chiew
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.202-213
    • /
    • 2022
  • Antibiotic resistant Escherichia coli cases are increasing high especially in Southeast Asia. Illegal use of the antibiotic in the aquaculture farming may become the culprit of the outbreak and spread into environmental source. A study was conducted to: 1) detect the chloramphenicol (CAL)-resistant gene in E. coli isolated from three aquaculture farms and six rivers of northwestern Borneo and 2) investigate the correlation between cat gene with five common antibiotics used. Isolation of E. coli was done on Eosin methylene blue agar and characterized using indole, methyl red, Voges-Proskauer, citrate tests. E. coli isolates were subsequently tested for their susceptibility to five antibiotics commonly used in aqua-farming. The CAL-resistant E. coli were further analyzed for the presence of resistant genes (cat I, cat II, cat III, cat IV) using multiplex polymerase chain reaction. 42 bacterial colonies were isolated from a total of 80 individual water samples, 34 of which were identified as E. coli. Result showed 85.3% of the E. coli isolates were resistant to amoxicillin, 35.3% were resistant to tetracycline, 29.4% were resistant to CAL, 17.6% were resistant to nitrofurantoin and 8.8% were resistant to nalidixic acid. All of the 10 CAL resistant E. coli isolateswere detected with cat II genes; five isolates detected with cat IV genes; three isolates detected with cat III genes; and another two detected with cat I genes. Pearson correlation coefficient shows highly significant relationship between resistance pattern of CAL with amoxicillin; and CAL with tetracycline. Our findings provide the supplementary information of the CAL resistance gene distribution, thereby improving our understanding of the potential risk of antibiotic resistance underlying within this microbial ecosystem.