• Title/Summary/Keyword: acid-etched

Search Result 298, Processing Time 0.032 seconds

Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

  • Li, Lin-Jie;Kim, So-Nam;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.235-240
    • /
    • 2016
  • PURPOSE. In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS. The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS. Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION. This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.

Double Textured AZO Film and Glass Substrate by Wet Etching Method for Solar Cell Application

  • Jeong, Won-Seok;Nam, Sang-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.594-594
    • /
    • 2012
  • Al doped ZnO (AZO) thin films were deposited on textured glass substrate by magnetron sputtering method. Also, AZO films on textured glass were etched by hydrochloric acid (HCl). Average thickness of etched AZO films are 90 nm. We observed morphology of AZO film by AFM with various etchant concentration and etching time. Etched AZO films have low resistivity and high haze. The surface RMS roughness of AZO film was increased from 53.8 nm to 84.5 nm. The haze ratio was also enhanced in above 700 nm of wavelength due to light trapping effect was increased by rough AZO surface. The etched AZO films on textured glass are applicable to fabricate solar cell.

  • PDF

Evaluation of the stability of sandblasted, large-grit, acid-etched implants with tapered straight body design (테이퍼드 직선형 SLA 임플란트의 안정성 평가)

  • Kim, Yong-Gun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.80-88
    • /
    • 2018
  • Purpose: Implant surface modification and implant design are the principle targets for achieving successful primary stability. The aim of this study was to measure implant stability quotient (ISQ) values of sandblasted, large-grit, acid-etched (SLA) implants with tapered straight body design during the healing period, and to determine the various factors affecting implant stability. Materials and Methods: To measure implant stability, resonance frequency analysis (RFA) was performed in 26 patients (13 women and 13 men) with 44 SLA implants with tapered straight body design. Implant stability (ISQ values) was evaluated at baseline and healing abutment connection (12 weeks), and the correlations between RFA and insertion torque (IT), bone quality, and jawbone were determined. Results: The mean ISQ value of the implants was $69.4{\pm}10.2$ at the time of implant placement (baseline) and $81.4{\pm}6.9$ at the time of healing abutment connection (P < 0.05). Significant differences were found between RFA and bone quality and between RFA and jawbone (P < 0.05). No significant differences were found between RFA and IT, insertion area, fixture diameter, and implant length (P > 0.05). Conclusion: ISQ values of SLA implants with tapered straight body design were high at baseline and healing abutment connection. It was concluded that SLA implants with tapered straight body design show improved primary and secondary stability, and that immediate or early loading may be applicable.

AN EFFECT OF ND : YAG LASER ON THE BONDING STRENGTH OF COMPOSITE RESIN TO DENTIN AND PORCELAIN (Nd : YAG 레이저가 상아질 및 도재와 복합레진간의 결합강도에 미치는 영향)

  • Woo, Gum-Jin;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.385-399
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of etching with a Nd : YAG Laser on dentin, or porcelain surface on the bond strength with composite resin. The dentin specimens were devided into the following 4 groups. D1 : No treatment D2 : Etched with 10% phosphoric acid D3 : Laser etchded with 1W, 20PPs D4 : Laser etched with 2W, 20PPS The procelain specimens were devided into the following 4 groups. P1 : diamond roughened P2 : etched with HF acid P3 : Laser etched with 2W, 20PPS P4 : Laser etched with 3W, 20PPS All specimens were veneered with resin. One half of the specimens were stored in $37^{\circ}C$ water for one day and the other half were thermocycled 1000 times at temperature of $5^{\circ}C\;to\;55^{\circ}C$ at 20 seconds intervals. After that, the bonding strength of composite resin to the dentin and porcelain was measured. The surface treated state and fractured state were observed with SEM. The following results were obtained. 1. In the dentin specimens, the bond strength of group D2 was highter than that of groups D1 and D3 in the case of the specimens stored in $37^{\circ}C$ water for one day, there was a statistically significant difference between group D2 and D1, D3 (P<0.05). The bonding strength of the specimens that were thermocycled decreased in the following order : group D2,D4,D3 and then D1. 2. In the porcelain specimens, the bonding strength of groups P1,P2 were higher than that of group P3 in the case of the specimens stored in $37^{\circ}C$ water for one day (P<0.05). The bonding strength of the specimens of being thermocycled decreased in the following order : group P2,P1,P4 and then P3. 3. The groups of high bond strength had a rougher surface and a high level of microporosity with SEM findings.

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF ETCHED PORCELAIN (도재의 부식정도에 따른 접합강도에 관한 실험적 연구)

  • Cho, Kyung;Lee, Ho-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.177-189
    • /
    • 1986
  • To investigate the bond strength of etched porcelain, porcelain specimens were etched by 5% hydrofluoric acid during the time of 2.5 min., 5 min., 7.5 min., and 10 min. at $23^{\circ}C$ and observed by SEM. Also, electrolytically etched metal was observed by SEM. Etched porcelain specimens were treated or were not treated with Silane coupling agent and bonded to etched metals with Comspan and Panavia. The bonded specimens were stored in water at $37^{\circ}C$. 24 hours after bonding, the bond strengths were measured. There were four groups of 25 specimens each. Group 1 was bonded with Panavia. Group 2 was bonded with Panavia after treated with Silane coupling agent. Group 3 was bonded with Comspan, Group 4 was bonded with Comspan after treated with Silane coupling agent. The results were as follows: 1. he etched porcelains were obviously observed by SEM. 2. The dendritic arms were observed in etched metal by SEM. 3. The bond strength in relation to the increase of etching time increased and an analysis of variance shows significantly different at the 0.01 level in all groups. 4. The bond strength of Silane coupling agent treated groups were higher than the untreated. 5. The ratios of increase of the bond strengths of Silane coupling agent treated groups in relation to the increase of etching of etching time were lower than the untreated. 6. The bond strength of the groups used Comspan were higher than Panavia.

  • PDF

Effects of the Additives on Etching Characteristics of Aluminum Foil (첨가제에 의한 알루미늄박의 에칭특성변화)

  • Kim, Seong-Gap;Shin, Dong-Cheol;Jang, Jae-Myeong;Lee, Jong-Ho;Oh, Han-Jun;Chi, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2001
  • The effects of additives in the HCI etching solution on etching behaviors of aluminum foil as dielectric film for electrolytic capacitors were investigated. The etch pits formed in 1M hydrochloric acid containing ethylene glycol as an additive contain more fine and homogeneous etch tunnels compared to those in 1 M hydrochloric acid only, which led to the increase in the effective internal surface area of aluminum foil. After anodizing of aluminum foil etched in etching solutions, the LCR meter results have shown that the capacitance of dielectric film etched in hydrochloric acid with ethylene glycol was increased remarkably compared to that etched in hydrochloric acid only.

  • PDF

Effect of Chemically Etched Surface Microstructure on Tribological Behaviors

  • Hye-Min Kwon;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.84-90
    • /
    • 2024
  • This study investigates the effect of the surface microstructure on the tribological characteristics of glass substrates. Chemical etching using hydrofluoric acid and ammonium hydrogen fluoride was employed to create controlled asperity structures on glass surfaces. By varying the etching time from 10 to 50 min, different surface morphologies were obtained and characterized using optical microscopy, surface roughness measurements, and water contact angle analysis. Friction tests were performed using a stainless steel ball as the counter surface to evaluate the tribological behavior of the etched specimens. The results showed that the specimen etched for 20 min exhibited the lowest and most stable friction coefficient, which was attributed to the formation of a uniform and dense asperity structure that effectively reduced the stress concentration and wear at the contact interface. In contrast, specimens etched for shorter (10 min) or longer (30-50 min) durations displayed higher friction coefficients and accelerated wear owing to nonuniform asperity structures that led to local stress concentration. Optical microscopy of the wear tracks further confirmed the superior wear resistance of the 20-minute etched specimen. These findings highlight the importance of optimizing the etching process parameters to achieve the desired surface morphology for enhanced tribological performance, suggesting the potential of chemical etching as a surface modification technique for various materials in tribological applications.

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

THE SHEAR BOND STRENGTHS OF COMPOSITE RESINS TO GLASS IONOMER CEMENTS BY SURFACE TREATMENT AND ELAPSED TIME (광중합 GIC충전후 경과시간 및 표면처리에 따른 복합레진과의 결합강도에 관한 연구)

  • Chung, Hye-In;Kim, Shin;Chung, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.82-94
    • /
    • 1997
  • For the purpose of establishing the most appropriate method of bonding between glass ionomer liners and composite resin and comparing the materials for sandwich technique, an experiment was performed to measure the shear bond strengths between the two with the variables in the surface treatment of liners and elapsed time till composite buildup. Materials used were Vitrebond and Fuji II LC, each as the restorative and liner respectively, and each group was subdivided by surface treatment (acid etching and sandblasting) and time elapsed from GIC filling to composite buildup (immediately, 1 day, 7 days), consisting 12 groups as a whole. Each subgroup was composed of 10 specimens and the shear bond strength between GIC liners and composite resin was measured under UTM and analyzed. The result were as follows: 1. The shear bond strength between two materials was highest when initially filled Fuji II LC was sandblasted after 1 days and composite built-up (Group FS1). And the lowest value was found when GIC was acid-etched after 7 days and composite built-up (Group FE7). Significant difference was found between the two groups. (P<0.01) 2. In regard of surface treatment of GI liners, acid-etched group (VE) showed higher bond strength than sandblasted group (VS) for Vitrebond. But, the reverse was true for Fuji II LC. (P<0.05) 3. In regard to the time elapsed from GI filling to composite buildup, the group of 1 day elapse showed relatively higher strength for Vitrebond. On the contrary, immediate buildup group (FE0) was stronger for acid-etched group and 1 day elapse group(FS1) was higher for sand-blasted group in Fuji II LC. (P<0.05)

  • PDF

Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization (Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향)

  • Lee, Sang-Ho;Lee, Sung-Ho;Kang, Young-Jae;Kim, In-Kwon;Park, Jin-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.