• Title/Summary/Keyword: acid stress

Search Result 1,636, Processing Time 0.03 seconds

Effects of Buja-tang Extract on Osteoarthritic Animal Model (부자탕 추출물이 골관절염 동물 모델에 미치는 영향)

  • Park, Jung-Hyun;Yang, Doo-Hwa;Woo, Chang-Hoon;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.17-32
    • /
    • 2021
  • Objectives The present study was designed to find out the therapeutic effects and possible underlying mechanism of Buja-tang, a herbal complex formula on experimental monosodium iodoacetate (MIA)-induced osteoarthritis. Methods Osteoarthritis models were created via intra-joint injection of MIA (50 μL with 80 mg/mL) in rats. Rats were divided into five groups and each group consisted of seven. Normal group was not injected MIA and did a normal diet. Control group injected MIA and received distilled water. Indo injected MIA and oral administration of 5 mg/kg of indomethacin. BJTL injected MIA and oral administration of 100 mg/kg of Buja-tang. BJTH injected MIA and oral administration of 200 mg/kg of Buja-tang. We analyzed weight-bearing ability of hind paws, oxidative stress related factor, antioxidant protein, inflammatory protein, inflammatory messenger and cytokine in joint tissue. Pathological observation of knee cartilage tissue structures was also performed with hematoxylin & eosin and safranin-O chromosomes. Results Weight-bearing ability of hind paws showed a tendency to reduce pain. The incidence of nicotinamide adenine dinucleotide phosphate oxidase and p22phox in articular tissue was significantly reduced, and the incidence of nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 and superoxide dismutases was significantly increased. The incidence of phosphorylated inhibitor of κBα, nuclear factor-kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β decreased significantly. In pathological observation, cartilage tissue damaged by MIAs in biopsy has significantly recovered from Buja-tang administration. Conclusions Buja-tang has anti-inflammation, antioxidation and pain relief effects. So this is thought to inhibit the progress of osteoarthritis in rat caused by the MIA.

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Protective Effect of Tongyuhwalhyeol-tang on Liver Injury in Thioacetamide-induced Rat (Thioacetamide 유발 간손상모델에서 통규활혈탕의 간보호효과)

  • Kim, Kyeong Jo;Shin, Mi-Rae;Kim, Soo Hyun;Kim, Su Ji;Lee, Ah Reum;Kwon, Ojun;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Objectives : Liver disease is an inflammatory reaction caused by oxidative stress, viral, alcohol, and drug properties. Inflammatory reaction causes hepatitis and chronic hepatitis is persistent, it progresses to liver fibrogenesis and liver cancer. The aim of this study was to confirm the hepatoprotective effect of Tongyuhwalhyeol-tang(Tongqiaohuoxue Decoction) (TH) and Gamtongyuhawlhyeol-tang(GTH) in TAA-induced liver injury animal model. Methods : The antioxidant activities were evaluated through in vitro experiments, such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays, total polyphenol and total flavonoid content measurement. To confirm the liver protective effect, induced by Thioacetamide (TAA) for 3 days injection at 200 mg/kg rats. TH and GTH were treated 3 days at 200 mg/kg/day. The changes of reactive oxygen species (ROS), peroxynitrite ($ONOO^-$), alanine aminotransferanse (ALT) and aspartate aminotransferase (AST) in serum were analyzed after experiment. Also, expression of anti-inflammation, anti-oxidant related proteins were investigated by western blot analysis. Results : TH was inhibited the antioxidant activities. In the TAA-induced rat, TH decreased ROS, $ONOO^-$, ALT, AST level in serum. Inflammation related protein expressions increased in TAA-induced rat compared to normal rat. However, TH group inhibited the down expression of these proteins. Also, anti-oxidant related protein expressions increased in TH group compared TAA-induced rat. Conclusion : Therefor, these results suggested that TH provided hepatoprotective effects on the hepatic injury leading to the reduction of inflammatory response. In addition, the effect of TH was superior to that of GTH.

2020 Dietary Reference Intakes for Koreans: vitamin C (2020 한국인 영양소 섭취기준: 비타민 C)

  • Park, Sunmin
    • Journal of Nutrition and Health
    • /
    • v.55 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Vitamin C is an important physiological antioxidant which neutralizes reactive oxygen species (ROS) and reduces the oxidative stress in the body. Although it has been associated with various diseases, few studies have reported the dose-response relationship between vitamin C intake, storage and functions in the body, including its antioxidant function. The criteria to establish the Dietary Reference Intakes for Koreans (KDRIs) for vitamin C were based on the changes in plasma concentrations and saturation of leukocytes according to intake levels and the effects on antioxidant capacity and risk of metabolic diseases. When establishing the 2020 vitamin C KDRI, while there was no change in the criteria from those of 2015, the reference values were recalculated and revised to reflect changes such as the new standard weight by age. As the number of people consuming dietary supplements has increased over the last decade, only about 10% of adults consume less than the average total vitamin C, but the proportion of adolescents and elderly who consume less than the average is high. On the other hand, as the intake of vitamin C supplements increases, the proportion of people consuming excessive vitamin C is also increasing. There is a body of opinion that it is necessary to establish a vitamin C KDRI for smokers or people with chronic diseases such as the metabolic syndrome, but these standards have not been established due to the lack of supporting scientific evidence. As a result, studies to establish vitamin C KDRI for Korean smokers and patients with the metabolic syndrome, as well as studies on the excessive intake of vitamin C due to supplementation and interactions with other nutrients, are needed.

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

Investigating the Role of Microglia in Maternal Immune Activation in Rodent Models (모체 면역 활성화 유도 설치류 모델에서 미세아교세포의 역할 조사)

  • Hyunju Kim
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.429-435
    • /
    • 2023
  • Epidemiological studies suggest that maternal infection, maternal stress, and environmental risk factors during pregnancy increase the risk of brain development abnormalities associated with cognitive impairment in the offspring and increase susceptibility to schizophrenia and autism spectrum disorder. Several animal models have demonstrated that maternal immune activation (MIA) is sufficient to induce abnormal brain development and behavioral defects in the fetus. When polyinosine:polycytodylic acid (poly I:C) or lipopolysaccharide (LPS), which is commonly used in maternal immune activation animal models, was introduced into a pregnant dam, an increase in pro-inflammatory cytokines and microglial activity was observed in the offspring's brain. Microglia are brain-resident immune cells that play a mediating role in the central nervous system, and they are responsible for various functions, such as phagocytosis, synapse formation and branching, and angiogenesis. Several studies have reported that microglia are activated in MIA offspring and influence offspring behavior through interactions with various cytokines. In addition, it has been reported that they play an important role in brain circuits through interactions with neurons and astrocytes. However, there is controversy concerning whether microglia are essential to brain development or lead to behavioral defects, and the exact mechanism remains unknown. Therefore, for the potential diagnosis and treatment of brain developmental disorders, a functional study of microglia should be conducted using MIA animal models.

Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes

  • Ji-Young Jeong;Lian Cai;Mirae Kim;Hyerin Choi;Dongjin, Oh;Ali Jawad;Sohee Kim;Haomiao Zheng;Eunsong Lee;Joohyeong Lee;Sang-Hwan, Hyun
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.24.1-24.13
    • /
    • 2023
  • Background: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. Objectives: This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). Methods: Each EGT concentration (0, 10, 50, and 100 μM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. Results: After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 μM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 μM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 μM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. Conclusions: Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.

Neuroprotective Effect of Insamyangyung-tang (인삼양영탕(人蔘養營湯)의 산화적 stress에 대한 뇌세포 보호효과)

  • Kim, Seung-Hyun;Lee, Chang-Hoon;Lee, Jin-Moo;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Purpose: Oxidative stress was thought to play a critical role in neurodegenerative disease. Many in vivo and in vitro reports explained the possible pathway of human aging. But in therapeutic aspects, there was no clear answers to prevent aging associated with neural diseases. In this study, we investigated the antioxidant and neuroprotective effects of the Insamyangyung-tang (IYT). Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3- ethylbenzothiazoline-6- sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of IYT in vitro. We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The $IC_{50}$ values were $571.6{\mu}g/m{\ell}$ and $202.3{\mu}g/m{\ell}$ in DPPH and ABTS assay respectively. Total polyphenolic content was 1.05%. In SH-SY5Y culture, IYT significantly increased the decreased cell viability by 6-OHDA at the concentrations of $10{\mu}g/m{\ell}$ in pre-treatment group, $10-100{\mu}g/m{\ell}$ in post-treatment group, and $100{\mu}g/m{\ell}$ in co-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in IYT treated group. In mesencephalic dopaminergic cell culture, the IYT group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of $0.2{\mu}g/m{\ell}$. Conclusion: These results showed that IYT has antioxidant and neuroprotectctive effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Performance, blood and antioxidant status in dual-purpose laying hens supplemented with aqueous extract of Christ's thorn jujube (Ziziphus spina-christi L.) leaves as phytogenic agent in subtropical conditions

  • Khaled H. El-Kholy;Hasan Tag El-Din;Found A. Tawfeek;Vincenzo Tufarelli;Caterina Losacco;Rashed A. Alhotan;Manal E. Shafi;Mohamed A. Korish;Youssef A. Attia;Sara H. M. Hassab
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.896-907
    • /
    • 2024
  • Objective: The potential of aqueous extract of Christ's thorn jujube (Ziziphus spina-christi) leaves (SLAE) to reduce the negative impacts of heat stress on production performance and physiological traits was investigated in dual-purpose layers under subtropical farming. Methods: A total of 200, 25-week-old laying hens (Inshas strain) were randomly assigned to four dietary treatments including SLAE at 0, 2.5, 5.0, and 7.5 mL/kg, respectively. The average temperature-humidity index value was 26.69 during the experimental period. The SLAE contained saponin (0.045%), total flavonoid content of 17.9 mg of quercetin equivalent/100 g and overall antioxidant capacity concentration of 17.9 mg of ascorbic acid equivalent/100 g. Results: The maximum final body weight (BW), BW gain, egg weight, number, and mass occurred at the level of SLAE7.5 inclusion. The egg quality was significantly higher in SLAE groups than in control, and overall, SLAE7.5 had the most favorable influence at 28 and 32 weeks. Liver and kidney function, as well as lipids profile, improved significantly by SLAE inclusion; the lowest concentrations of these parameters were in SLAE7.5 hens. Treatment with SLAE7.5 increased total antioxidant capacity and endogenous antioxidant enzymes compared to control, whereas no effect on superoxide dismutase was noticed. Conclusion: The addition of SLAE at 7.5 mL/kg diet improved egg laying performance and quality, metabolic profiles, and antioxidant status during hyperthermia conditions.