• Title/Summary/Keyword: acid hydrolysis condition

검색결과 143건 처리시간 0.022초

황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향 (Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals)

  • 류재호;윤혜정
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.67-75
    • /
    • 2011
  • Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

1H-NMR 분광분석을 통한 진한 산 가수분해 반응 2차 반응 조건 분석 (Analysis of secondary reactions in concentrated sulfuric acid hydrolysis of hollocellulose by 1H-NMR spectroscopy)

  • 이재성;신수정
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.37-43
    • /
    • 2014
  • Kinetics of holocellulose hydrolysis in concentrated sulfuric acid was analyzed using $^1H$-NMR spectroscopy with different reaction time, temperature and acid concentration in secondary hydrolysis. In this work, reaction condition of secondary hydrolysis was similar to concentrated sulfuric acid process with electrodialysis or simulated moving bed chromatography process for sulfuric acid recycling. By $^1H$-NMR spectroscopy, acid hydrolyzates from higher secondary acid hydrolysis (25-35% acid concentration) was successfully analyzed without any difficulties in neutralization or adsorption of acid hydrolyzate to solid salt. Higher acid concentration, higher temperature and longer reaction time led to more cellulose for glucose conversion but accompanied with glucose to galactose isomerization, glucose to unknown compounds and degradation of glucose to organic acid via furans.

Determining Optimum Condition of Acid Hydrolysis Technique for Food Waste Reduction

  • Kim, Eui Yeong;Choi, Young Gwang;Kim, Sung Chul
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.606-614
    • /
    • 2017
  • Amount of food waste has been increased annually in Korea and re-use of food waste as a fertilizer or soil amendment in agricultural field has been studied. Therefore, main purpose of this research was to determine optimum condition of hydrolysis for food waste management. Three different solvents, HCl, $H_2SO_4$, and KOH, were used and varied concentration at the range of 10~30% and hydrolysis time at the range of 1~3 hours were evaluated. In general, reduction rate of food waste was increased when concentration of solvent and hydrolysis time was increased except when KOH was used. Among different solvents, concentration, and hydrolysis time, the highest reduction rate (97.79%) was observed when 30% of HCl was used with temperature of $140^{\circ}C$ at 2 hours of hydrolysis time. In addition, neutralization effect of alkalic materials, shell waste (SW) and egg shell (ES) was evaluated. Both SW and ES increased pH of finished acid hydrolysis solution up to 7.61 indicating that neutralization effect of SW and ES was sufficient for finished acid hydrolysis solution. Contents of organic matter was also at the range of 10.7~13.04% and 5.53~8.04% respectively when HCl and $H_2SO_4$ were used as solvent. Overall, hydrolysis technique can be used to manage food waste with selected optimum condition in this study and characteristics of finished hydrolysis solution after neutralization might be suitable for soil amendments.

발효당 생산을 위한 목질계 바이오매스의 2단 산당화 (Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass)

  • 박장한;김준석
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.1-5
    • /
    • 2016
  • 목질계 바이오매스를 이용하여 효소를 사용하지 않고 발효당을 얻기 위해 황산을 이용한 당화를 수행하였다. 바이오매스로는 pinus rigida와 palm농업 부산물인 EFB를 사용하였다. 산을 이용한 당화에서는 당의 과분해 생성물을 줄이기 위한 당화조건을 생각해 보아야 한다. 따라서 본 연구에서는 목질계 바이오매스를 이용한 2단 산당화를 수행하였다. 산을 이용한 1차 가수분해에서는 72 wt%의 황산을 이용하여 $80^{\circ}C$에서 반응시켰을 경우 가장 높은 당화율을 보였고 pinus rigida와 EFB 각각 11.49 wt%, 32 wt%의 당화율을 보였다. 이후 1차 가수분해에서 얻은 액상을 9~15 wt%의 산농도가 되도록 묽혀 $50{\sim}120^{\circ}C$의 온도로 2차 가수분해를 진행했다. 2차 가수분해시 9%의 황산농도와 $120^{\circ}C$의 온도조건에서 80분간 반응시켰을 때 최종 글루코오스 당화율은 pinus rigida의 경우 86.8 wt.% (39 g/L), EFB의 경우 95.3 wt%(32.4 g/L)를 얻을 수 있었다. 각 단계에서 분석된 결과는 물질수지를 통해 확인하고 당화 효율을 비교해 보았다.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.

Bis-IBA 유도체의 합성 및 신경작용제 가수분해 촉매 효과 연구 (A Study on the Synthesis of bis-IBA Derivatives and their Catalytic Effects on the Hydrolysis Reaction of Nerve Agents)

  • 양일우;강덕구
    • 한국군사과학기술학회지
    • /
    • 제2권1호
    • /
    • pp.73-81
    • /
    • 1999
  • Four bis-iodosobenzoic acid derivatives have been synthesizd in 5 steps following literature methods from 5-hydroxyantranilic acid; 1) diazotization and iodination, 2) acid protection, 3) tosylate substitution, 4) acid deprotection, 5) oxidation of iodo-substituent to iodoso group. Catalytic effects of new 5,5'-tri-, tetra-, deca-, polyethyleneglycoxy- bis(2-iodosobenzoic acid) on hydrolysis reactions of PNPDPP(p-nitrophenyl diphenyl phosphate), sarin and soman have been measured to determine the role of ethyleneglycoxy substituents as phase transfer catalysts. At $25{\pm}0.2^{\circ}C$, pH 8.0, and cetyltrimethyl ammonium chloride(CTACl) micelle solution condition, bis-IBA derivatives hydrolyzes PNPDPP with maximum pseudo-first order rate constant($K_{obsd}^{max}$) of 0.32035 ~ 0.13659 $sec^{-1}$, which corresponds to 2~18 times rate increase than those of unsubstituted o-IBA[iodosobenzoate($K_{obsd}^{max}=0.0645sec^{-1}$), iodoxybenzoate ($K_{obsd}^{max}$ = $0.0178 sec^{-1}$)]. At the similar condition for PNPDPP hydrolysis, bis-IBA derivatives also act as efficient catalysts for hydrolytic cleavage of nerve agents such as sarin and soman. Hydrolysis rate constant with 5,5'-polyethyleneglycoxy- bis(2-iodosobenzoic acid) shows 7 times increase than that of simple 5-hydroxy-2-iodosobenzoic acid.

  • PDF

$^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구 (Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy)

  • 조대행;김용환;김병로;박종문;성용주;신수정
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

느타리버섯 폐상퇴비(廢床堆肥)의 산가수분해(酸加水分解) (Acid Hydrolysis of the Waste Composts of Oyster Mushroom)

  • 홍재식;고무석;김정숙;이극로
    • Applied Biological Chemistry
    • /
    • 제27권1호
    • /
    • pp.29-33
    • /
    • 1984
  • 느타리버섯 재배기간(栽培期間)중 각(各) 주기별(週期別)로 채취(採取)한 퇴비(堆肥)의 화학성분(化學成分)과 산가수분해조건(酸加水分解條件)을 검토(檢討)한 결과 퇴비(堆肥)의 화학성분(化學成分)중에서 회분량(灰分量)은 재배기간(栽培期間)중에 증가(增加)되었으나 유기물(有機物)은 감소(減少)되었으며 버섯의 수량(收量)은 90% 이상이 1,2주기(週期)에서 얻어졌다. 산가수분해(酸加水分解)의 최적조건(最適條件)은 $H_{2}SO_{4}$ 2.0%, 증기압(蒸氣壓) $1.5kg/cm^{2}$, 분해시간(分解時間) 30분(分), 산첨가량(酸添加量) 20배량(倍量)에서 가장 양호하였다. furfural의 함량(含量)은 산농도(酸濃度)의 증가(增加)에 따라 현저하게 증가(增加)되었다.

  • PDF

목질계 바이오매스의 이용(제3보)-탈리그닌 처리한 폭쇄재의 산가수분해- (Utilization of Ligno-cellulosic Biomass(III)-Acid Hydrolysis of Exploded Wood after Delignification)

  • 양재경;장준복;임부국;이종윤
    • 펄프종이기술
    • /
    • 제29권4호
    • /
    • pp.18-27
    • /
    • 1997
  • This study was performed to obtained the optimal delignified condition of exploded wood on the acid hydrolysis with sulfuric acid. Wood chips of pine wood(Pinus desiflora), oak wood(Quercus serrata) and birch wood (Betula platyphylla var. japonica) were treated with a high pressure steam (20-30kgf/$\textrm{cm}^2$, 2-6 minutes). The exploded wood was delignified with sodium hydroxide and sodium chlorite, and then hydrolyzed with sulfuric acid. The result can be summerized as follows ; In the exploded wood treated with sodium hydroxide, the optimal concentration of sodium hydroxide was 1% as content of lignin in the exploded wood. Lignin content of exploded wood treated with sodium chlorite was lower then that sodium hydroxide. The maximum reducing sugar yield of exploded wood treated with 1% sodium hydroxide was lower than non-treated exploded wood. In the case of sodium chlorite treated, the maximum reducing sugar yield was hgher than non-treated exploded wood. Sugar composition of acid hydrolysis solution was composed of xylose and glucose residue, and the rate of glucose residue was increased in high pressure condition.

  • PDF

Percolation 공정에 의한 목질계 헤미셀룰로오스의 묽은산 전처리 (Dilute Acid Pretreatment of Woody Hemicellulose Using a Percolation Process)

  • 염동문;김성배;박순철
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.312-319
    • /
    • 1998
  • The dilute-acid pretreatment/hydrolysis of hemicellulose in oak wood using a percolation reactor was investigated. The experimental conditions ranged 160∼180$^{\circ}C$ and 0.05∼0.2 wt.% sulfuric acid. XMG(xylan+mannan+galactan) recovery was higher when sulfuric acid was used as leaching solvent than water. Also it was important for high XMG recovery to keep leaching temperature higher after reaction. XMG recovery was decreased as the size of wood chips was increased. At an optimum condition (reaction condition= 170$^{\circ}C$, 0.1% sulfuric acid, 1ml/min, 10min, leaching condition=0.1% sulfuric acid, 2mL/min, 20 min), the product yield and the sugar concentration were about 92% and 2.7%, respectively.

  • PDF