• Title/Summary/Keyword: acid dissolution

Search Result 377, Processing Time 0.028 seconds

Effect of Ultrasound Irradiation during Cementation Process for Recovery of Iridium (이리듐 회수를 위한 시멘테이션 공정 중 초음파 조사의 영향)

  • Kim, Seunghyun;Kim, Young-Jin;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.61-67
    • /
    • 2021
  • This work investigated the cementation of iridium from iridium-containing hydrochloric acid leachate. Zinc powder was used as the reducing agent, and the effects of the stoichiometric ratio of Zn/Ir, initial Ir concentration, initial pH, reaction time, and ultrasound irradiation on iridium recovery were investigated. When only the stirrer was used for cementation, the iridium recovery increased with the addition amount of zinc, and the recovery of about 70% at 40 times the stoichiometric ratio of Zn/Ir. In contrast, when employing ultrasonic irradiation with stirring, the recovery of iridium decreased at 20 times or less the stoichiometric amount of zinc. The recovery of iridium increased at 40 times the stoichiometric ratio of Zn/Ir. This result may be due to the ionization of zinc and re-dissolution of iridium during the ultrasound irradiation treatment. When a combination of ultrasonic irradiation and stirring was used for cementation, the iridium recovery increased by more than 27% compared to that when using only the stirrer. It was possible to recover 99% of iridium under the following conditions: reaction time, 60 min; initial pH, 0.01; volume of leachate, 100 mL; 1770 ppm Ir, 40 times the stoichiometric ratio of Zn/Ir.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

A Study on the Au Recoverability from Mongolian Tailings (몽골 광미로부터 Au 회수 가능성에 관한 연구)

  • Ko, Chin-Surk;Burentogtokh, Togtokhmaa;Lee, Jong-Ju;Park, Cheon-Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of eco-friendly/efficient recovery of valuable resources, such as Au from mine tailings, which are environmental pollutants in the Mongolian mine sector. For this purpose, this study selected 4 place of mine tailings of the Mongolian mines sector and carried out mineralogy evaluation of the valuable resources in the tailings. In this study, flotation was performed to separate and concentrate valuable resources in the tailings. Microwave nitric acid leaching was used to leach the valuable resources contained in the sample and to improve the Au grade. Chloride leaching attempted to leach Au from the leaching residues. XRD analysis of the tailings samples showed that most of the samples consisted of silicate minerals. As a result of confirming the content of the element through XRF analysis, the SiO2 content was very high, the Fe2O3 content was 2.32-4.23%, and the content of PbO, CuO and ZnO components were all within 2%. As a result of flotation for the tailings samples, the recovery of Au was the highest in Bayanairag sample (95.38%). As a result of microwave nitric solution experiment on Au concentrate sample obtained by flotation, the content of Au in the microwave nitrate leaching residue increased by 12.15% from 192.72 g/ton to 216.14g/ton in Khamo sample, the highest increase was 57.58% in Bayanairag sample. TCLP tests on tailings generated after flotation showed dissolution characteristics within EPA. Chloride leaching test was performed to recover Au from solid residues. The leaching rate was 87.43-89.35% within 10 minutes. For Khamo sample, 100% Au was leached after 60 minutes of leaching time. Therefore, in order to process the tailings continuously generated in Mongolia, applying the same process as the present study is expected to effectively recover the valuable resources contained in the tailings.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.

Hydrochemical Characteristics of Natural Mineral Water in the Daebo and Bulguksa Granites (대보화강암과 불국사화강암지역 먹는샘물의 수리화학적 특성)

  • 조병욱;성익환;추창오;이병대;김통권
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.247-259
    • /
    • 1998
  • Groundwater quality of the natural mineral water was investigated in hydrochemical aspects in order to ensure that mineral water meets stringent health standards. There exist 20 mineral water plants in the Daebo granite and 4 mineral water plants in the Bulguksa granite, respectively. Both granite areas show some differences in water chemistry. The pH, EC, hardness, total ionic contents in groundwater of the Daebo granite area are higher relative to those of the Bulguksa granite area. The content of major cations is in the order of Ca>Na>Mg>K, while that of major anions shows the order of $HCO_3>SO_4$>Cl>F. The fact that the $Ca-Na-HCO_3$ type is most predominant among water types may reflect that the dissolution of plagioclase that is most abundant in granitic rocks plays a most important role in groundwater chemistry. Representative correlation coefficients between chemical species are variable depending on geology. In the Daebo granite area, $Ca-HCO_3(0.84),{\;}Mg-HCO_3(0.81),{\;}SiO_2-Cl(0.74),{\;}Na-HCO_3(0.70)$ show relatively good correlationships. In the Bulguksa granite area, fairly good correlationships are found among some components such as K-Mg(0.93), $K-HCO_3(0.92)$, Mg-Cl(0.92), $Cl-HCO_3(0.91)$, and K-F(0.90). According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite, whereas it is still greatly undersaturated with respect to dolomite, gypsum and fluorite. Based on the phase equilibrium it is clear that groundwater is mostly in equilibrium with kaolinite and becomes undersaturated with respect to feldspars, evolved from the stability area of gibbsite during water-rock interaction. While the activity of silica increases, there is no remarkable increase in the acivities of alkali ions and pH, which indicates that some amounts of silicic acid dissolved from silica phases as well as feldspars were provided to groundwater. It is concluded that chemical evolution of groundwater in granite aquifers may continue to proceed with increasing pH.

  • PDF