• Title/Summary/Keyword: acid adaptation

Search Result 185, Processing Time 0.022 seconds

A Study on practice for an Environment Friendly Design (환경친화적 디자인을 위한 실천을 관한 연구)

  • 송인호;이종석
    • Archives of design research
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2000
  • More recently, the ecocide like an environmental shocks of acid rain, oil spills and now the ozone layer have driven home the fact that we're all responsible for looking after our natural environment and threaten the our right to live. At such a situation enterprises has been to develop techniques of enhancing environment friendly design. However it is difficult to producing environment friendly product - especially at electronic product like a high accumulated thing and produced with a small amount - while they know the importance of environment. Because of a direct and actual disadvantage of enterprise and customer. Moreover it is rare and negative for physical point that an adaptation case of recycled material or natural one for designing. Therefore it is important to positive consideration and action of design process for the nature. In this paper the focus of interest is find out the active and real environmental friendly design practice scheme as a designer and understanding of basic of the environmental friendly design for a coexistence of the enterprise, customer, and environment.

  • PDF

Growth and solute pattern of Suaeda maritima and Suaeda asparagoides in an abandoned salt field

  • Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Sang-Hun;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.351-358
    • /
    • 2012
  • To investigate the environmental adaptation and ecophysiological characteristics of Suaeda maritima and S. asparagoides under saline conditions, plant growth and density were analyzed according to environmental changes of habitats. The total ion content of soil decreased with time, which was caused by the predominance of exchangeable $Na^+$ and $Cl^-$ in the upper layers. The population of S. maritima was more densely distributed in the region with higher ion contents of $Cl^-$, $Mg^{2+}$, $K^+$ and $Na^+$ than the population of S. asparagoides. Both species were showed a decreased population density according to increases in plant growth. Under the conditions of a salt field, S. maritima and S. asparagoides contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. In the case of free amino acid, S. maritima showed an especially high proline content, and contained rather large amounts of free amino acids, whereas S. asparagoides did not. Both species showed high inorganic ion contents in the leaves, which might be a mechanism of avoiding the ionic toxicity by diluting the accumulated ionic concentration with a high ratio of water content to dry weight. This result suggests that S. maritima seems to adapt to saline conditions by accumulating proline in addition to inorganic ions. S. asparagoides seems to adapt by osmoregulation processes, using inorganic ions rather than free amino acids.

Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice

  • Choi, Ha-Neul;Jang, Yang-Hee;Kim, Min-Joo;Seo, Min Jeong;Kang, Byoung Won;Jeong, Yong Kee;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.172-176
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is becoming an important public health problem as metabolic syndrome and type 2 diabetes have become epidemic. In this study we investigated the protective effect of Cordyceps militaris (C. militaris) against NAFLD in an obese mouse model. MATERIALS/METHODS: Four-week-old male ob/ob mice were fed an AIN-93G diet or a diet containing 1% C. militaris water extract for 10 weeks after 1 week of adaptation. Serum glucose, insulin, free fatty acid (FFA), alanine transaminase (ALT), and proinflammatory cytokines were measured. Hepatic levels of lipids, glutathione (GSH), and lipid peroxide were determined. RESULTS: Consumption of C. militaris significantly decreased serum glucose, as well as homeostasis model assessment for insulin resistance (HOMA-IR), in ob/ob mice. In addition to lowering serum FFA levels, C. militaris also significantly decreased hepatic total lipids and triglyceride contents. Serum ALT activities and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels were reduced by C. militaris. Consumption of C. militaris increased hepatic GSH and reduced lipid peroxide levels. CONCLUSIONS: These results indicate that C. militaris can exert protective effects against development of NAFLD, partly by reducing inflammatory cytokines and improving hepatic antioxidant status in ob/ob mice.

Molecular Cloning of Hemoglobin Alpha-chain Gene from Pantholops hodgsonii, a Hypoxic Tolerance Species

  • Yingzhong, Yang;Droma, Yunden;Guoen, Jin;Zhenzhong, Bai;Lan, Ma;Haixia, Yun;Yue, Cao;Kubo, Keishi;Rili, Ge
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.426-431
    • /
    • 2007
  • To investigate the possible mechanisms of high-altitude native animals in adapting to high altitude, we cloned hemoglobin alpha-chain (alpha-chain Hb) gene from Pantholops hodgsonii, an animal species that indigenously lives at elevations of 3700-5500 m on the Qinghai-Tibetan plateau. Using reverse transcription polymerase chain reaction (RT-PCR) technique, the alpha-chain Hb gene was amplified from total RNA in the liver of the Pantholops hodgsonii. TA cloning technique was used and the PCR product was cloned into pGEM-T vector. The DNA sequence of the gene was highly homologous with sheep (99.1%), goat (98.6%), cattle (95.6%) and human (86.5%). The alpha-chain Hb gene encoded a 142-amino acid protein that could be identified with the homology of alpha-chain Hb protein in sheep (98%), goat (96%), cattle (91%) and human (87%). However, 18 alternations were detected when compared with the alpha-chain Hb gene in human, and 2 in sheep. Moreover, the alterations of a117 GluAsp and $\alpha$132 AsnSer in important regions were noted in human and sheep, respectively. Phylogenetic analysis suggested that the structure of alpha-chain Hb was highly similar to that in sheep. This study provided essential information for elucidating the possible roles of hemoglobin in adapting to extremely high altitude in Pantholops hodgsonii.

Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins

  • Ki, K.S.;Khan, M.A.;Lee, W.S.;Lee, H.J.;Kim, S.B.;Yang, S.H.;Baek, K.S.;Kim, J.G.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.516-519
    • /
    • 2009
  • This study was conducted to investigate the effects of replacing whole crop corn silage (WCCS) with whole crop rice silage (WCRS) in the total mixed ration (TMR) on nutrient intake, milk yield and its composition in Holstein cows. The Chucheong rice variety (Oryza sativa L. Japonica) and corn (Pioneer 32 P75) were harvested at yellow-ripe stage and were ensiled in round bales and in trench silos, respectively. Two TMR containing either WCCS or WCRS were prepared. These diets were randomly assigned to 16 midlactating Holstein cows (8 cows per treatment) and were fed for 120 days. The first 20 days were used for dietary adaptation and for the next 100 days daily feed intake, milk yield and its composition were recorded. The pH, lactic acid, NDF, ADF, CP, Ca and P contents were similar in WCRS and WCCS. The DM, ash and EE contents of WCRS were greater compared with WCCS. Nutrient (DM, NDF, TDN and CP) intakes were similar in cows fed WCCS- and WCRS-based TMR. Daily and 4% fat corrected milk yield were not affected by the treatments. Milk composition (percent milk fat, protein, lactose and total solids) was similar in cows fed either WCCS- or WCRSbased TMR. The concentration of milk urea N was greater in cows fed WCRS-based TMR than those fed WCCS-based TMR. In conclusion, round-baled WCRS can replace WCCS in the diet of mid- to late-lactating Holsteins without any deleterious effects on feed consumption, milk yield and its composition. The present findings raise the possibility that WCRS can be used as an alternative roughage source in the diets of dairy cows in countries with surplus rice production.

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF

Studies on the Use of Wet Sorghum Distiller's Grains in Lactating Cows

  • Chiou, P.W.S.;Chang, S.H.;Chiang, J.K.;Yu, B.;Chen, C.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.895-900
    • /
    • 1999
  • The aim of this study was to evaluate the effect of incorporating wet sorghum distiller's grains (WSDG) as part of their diet on the lactating performance of dairy cows. Twenty-seven Holstein milking cows were selected, all in the early lactating stage, with an average weight of 550 kg, and producing an average of 30 kg of milk daily. The cows were divided into three groups according to milk yield and lactation and were fed different total mixed rations. The diets were formulated according to NRC (1989) recommendations in three rations to (1) control diet, (2) 15% WSDG diet and (3) 30% WSDG diet. The three different diets were all formulated as iso-nitrogen and iso-energetic diets. After one week adaptation period, the experimental feeding was conducted for 8 weeks. Three ruminal cannulated cows were also examined in order to investigate ruminal fermentation of the three total mixed rations. The results showed that the milk yield, as corrected to the 4.0% fat standard, had no significant difference among the control, 15% WSDG and 30% WSDG treatment groups (p>0.05). The daily dry matter intake of the control group was higher than the other groups (p<0.05). with respect to milk composition, milk fat, milk protein and total solids, there was no significant difference among the treatment groups (p>0.05). The energy efficiency of the 30% WSDG group were significantly higher than the other treatment groups (p<0.05). Ruminal pH value showed no difference among the treatment groups (p<0.05). Ammonia-nitrogen concentration in the control group was higher than the other treatment groups (p<0.05). The concentration of total ruminal volatile fatty acid was similar in all three dietary groups.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.

Hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus

  • Lee, Ah-Yeon;Kang, Min-Jung;Choe, Eunok;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.262-267
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The primary objective of the treatment of diabetes mellitus is the attainment of glycemic control. Hyperglycemia increases oxidative stress which contributes to the progression of diabetic complications. Thus, the purpose of this study was to investigate the hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. MATERIALS/METHODS: Rats with streptozotocin-induced diabetes received an oral administration of a starch solution (1 g/kg) either with or without a 70% ethanol extract of Daraesoon (400 mg/kg) or acarbose (40 mg/kg) after an overnight fast and their postprandial blood glucose levels were measured. Five-week-old C57BL/6J mice were fed either a basal or high-fat/high-sucrose (HFHS) diet with or without Daraesoon extract (0.4%) or acarbose (0.04%) for 12 weeks after 1 week of adaptation to determine the effects of the chronic consumption of Daraesoon on fasting hyperglycemia and antioxidant status. RESULTS: Compared to the control group, rats that received Daraesoon extract (400 mg/kg) or acarbose (40 mg/kg) exhibited a significant reduction in the area under the postprandial glucose response curve after the oral ingestion of starch. Additionally, the long-term consumption of Daraesoon extract or acarbose significantly decreased serum glucose and insulin levels as well as small intestinal maltase activity in HFHS-fed mice. Furthermore, the consumption of Daraesoon extract significantly reduced thiobarbituric acid reactive substances and increased glutathione levels in the livers of HFHS-fed mice compared to HFHS-fed mice that did not ingest Daraesoon. CONCLUSIONS: Daraesoon effectively suppressed postprandial hyperglycemia via the inhibition of ${\alpha}$-glucosidase in STZ-induced diabetic rats. Chronic consumption of Daraesoon alleviated fasting hyperglycemia and oxidative stress in mice fed a HFHS diet.