• Title/Summary/Keyword: acetylene black

Search Result 35, Processing Time 0.021 seconds

Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성)

  • 조영재;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

Effect of ball-milling condition on electrochemical properties of $LiFePO_4-C$ cathode materials

  • Jin, Bo;Jin, En-Mei;Park, Kyung-Hee;Park, Bok-Kee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.338-338
    • /
    • 2007
  • $LiFePO_4-C$ cathode materials were prepared by hydrothermal reaction and ball-milling. In order to enhance the electronic conductivity of $LiFePO_4$, 10% of acetylene black was added. During the ball-milling, different revolutions per minute (100, 200 and 300 rpm) was carried out. The structural and morphological performance of $LiFePO_4-C$ powders were characterized by X-ray diffraction and scanning electron microscope. The X-ray diffraction results demonstrated that $LiFePO_4-C$ powders had an orthorhombic olivine-type structure with a space group of Pnma. $LiFePO_4-C$ batteries were characterized electrochemically by charge/discharge experiments. The charge/discharge experiments indicated that $LiFePO_4-C$/Li batteries by 300 rpm of the ball-milling exhibited the best electrochemical performance with the discharge capacity of 126mAh/g at a discharge rate of $0.1mA/cm^2$.

  • PDF

Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery (Li/$V_6O_{13}$ 2차전지의 제조 및 특성)

  • Moon, S.I.;Jeong, E.D.;Doh, C.H.;Yun, M.S.;Yum, D.H.;Chung, M.Y.;Park, C.J.;Youn, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF

Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Lee, Kyung-Won;Han, Sang-Do;Singh, Ishwar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.219-223
    • /
    • 2009
  • $TiO_2$ doped with $Er^{3+\;and\;Yb^{3+}$ was used for fabricating a scattering layer and a nano-crystalline $TiO_2$ electrode layer to be used in dye-sensitized solar cells. The material was prepared using a new sol-gel combustion hybrid method with acetylene black as fuel. The $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide powder synthesized at 700oC had embossed structure morphology with a size between 27 to 54 nm that agglomerated to produce micron size particles, as observed by the scanning electron micrographs. The XRD patterns showed that the $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide had an amorphous structure, while using the same method without doping $Er^{3+}\;or\;Yb^{3+},\;TiO_2$ was obtained in the crystallite form with thea dominance of rutile phase. Fabricating a bilayer structure consisting of nano-crystalline $TiO_2$ and the synthesized $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide showed better scattering property, with an overall increase of 15.6% in efficiency of the solar cell with respect to a single nano-crystalline $TiO_2$ layer.