• Title/Summary/Keyword: acetylcholinesterase 저해

Search Result 111, Processing Time 0.019 seconds

Quality Properties of Baechu kimchi treated with Black Panax ginseng Extracts during Fermentation at Low Temperature (흑삼추출액을 첨가한 배추김치의 저온 저장 중의 품질 특성)

  • Mo, Eun-Kyoung;Kim, Seung-Mi;Yun, Beom-Sik;Yang, Sun-A;JeGal, Sung-A;Choi, Young-Sim;Ly, Sun-Yung;Sung, Chang-Keun
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2010
  • To develop a new functional kimchi with cognition-enhancing properties, black Panax ginseng extract (0.5-5%, w/w) was added to a baechu kimchi preparation and the mixture stored at $4^{\circ}C$ for 30 days. Compared with control kimchi, the L values of ginseng-treated material were significantly decreased, but the a and b values were increased. The hardness value of ginseng-treated kimchi was significantly higher than that of control material from the $20^{th}$ day of storage. The edibility period of baechu kimchi treated with ginseng was prolonged by approximately 15 days compared with control kimchi. This resulted from decreases in the numbers of lactic acid bacteria and yeasts during the final stages of fermentation in ginseng-treated material. Inhibition of acetylcholinesterase activity by ginseng-treated kimchi was 2-fold higher than that of control material. A strong ginseng flavor and a bitter taste were evident in kimchi treated with 5% (w/w) ginseng, and sensory quality was thus decreased compared with control material. It was concluded that an appropriate concentration of black ginseng extract was 3% (w/w) in preparation of kimchi with a cognition-enhancing effect.

Effect of Organophosphorus Insecticides on the Inhibition of the Acetylcholinesterase Activities (유기인계(有機燐系) 살충제(殺?劑)가 Acetylcholinesterabe 활성저해(活性沮害)에 미치는 영향(影響))

  • Kim, Jung-Ho
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.92-99
    • /
    • 1988
  • The responses of brain acetylcholinesterase and plasma cholinesterase activities were examined in chicken given oral doses of an organophosphorus insecticides. Acute oral $LD_{50}$ of terbufos was 1.82mg/kg, and terbufos sulfone was 2.85mg/kg, terbufos sulfoxide, terbufoso xon, terbufosoxon sulfone and terbufosoxon sulfoxide were about $0.30{\sim}0.79mg/kg$, respectively. Acute oral $LD_{50}$ of phorate was 1.02mg/kg, and phorate sulfone was 1.73mg/kg, phorate sulfoxide, phoratoxon, phoratoxon sulfoxide and phoratoxon sulfone were about $0.36{\sim}0.63mg/kg$, respectively. Dosages of 50% inhibition for brain AChE and plasma ChE activities in chicken at 60 mins after oral administration of organop hosphorus insecticides were $35.3{\pm}6.8%\;and\;17.4{\pm}3.6%$ of acute oral $LD_{50}$, respectively. Activities of brain AChE and plasma ChE in chicken at 60 mins after oral administratration of acute oral $LD_{50}$ of organophosphorus insecticides were inhibited by $83.7{\pm}3.9%\;and\;93.3{\pm}2.2%$, respectively.

  • PDF

Toxic action of benfuracarb via oxidative bioactivation process by cytochrome $P_{450}$ (Procarbamate계 살충제 benfuracarb의 산화적 활성화 과정을 통한 독성발현)

  • Yu, Yong-Man;Kim, Eun-H.;Kim, Song-Mum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • This study was conducted to understand the role of oxidative enzyme cytochrome $P_{450}$ in the bioactivation of benfuracarb and to know metabolites of benfuracarb by cytochrome $P_{450}$. The bimolecular imhibition rate constant $(k_i)$ of benfuracarb on acetylcholinesterase (AChE) was as low as $1.1{\times}10^3\;M^{-1}\;min^{-1}$, suggesting that benfuracarb should be activated for its toxic action. The potency of benfuracarb on AChE in the oxidase system (cytochrome $P_{450}$ + NADPH) in vitro was 10-fold higher than that of control (cytochrome $P_{450}$). Such a similar result was also found in the oxidase + PBO system. In vivo the $I_{50}$ of benfuracarb was 22.7mg $kg^{-1}$, but pie-treatment of piperonyl butoxide (PBO) reduced the $I_{50}$ by >100mg $kg^{-1}$. This result suggests that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Using microsomal oxidase system, metabolites of benfuracarb were elucidated. Fifty-eight percent of benfuracarb was converted to carbofuran, a major toxic metabolite, in the oxidase system, while only less than two percent of benfuracarb was converted to carbofuran in the oxidase + PBO system. These results also suggest that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Overall results indicate that cytochrome $P_{450}$ could be involved in the bioactivation of benfuracarb to carbofuran.

Antioxidant, Physiological Activities, and Acetylcholinesterase Inhibitory Activity of Portulaca oleracea Extracts with Different Extraction Methods (추출방법에 따른 쇠비름의 항산화, 생리활성 및 Acetylcholinesterase 저해활성)

  • Kwon, Yu-Ri;Cho, Sung-Mook;Hwang, Seung-Pil;Kwon, Gi-Man;Kim, Jae-Won;Youn, Kwang-Sup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.389-396
    • /
    • 2014
  • The physiological properties of 70% ethanol extracts from Portulaca oleracea with different extraction methods (reflux extraction, RE; autoclave extraction, AE; low temperature high pressure extraction, LTPE) were investigated. The freeze-dried powder yields of RE, AE, and LTPE were 33.78%, 30.80%, and 11.05%, respectively. The color values of L and b were higher in LTPE, and the chroma values were higher in AE and LTPE compared to RE. The total polyphenolics and proanthocyanidin contents in LTPE were significantly higher than in other extracts. The amount of substances related to flavonoids contents was highest in RE (4.30 mg/g), followed by AE (4.06 mg/g), and LTPE (4.00 mg/g). DPPH radical scavenging ability with a concentration of 500 mg% (w/v) were in the following order; LTPE (88.87%)> RE (83.84%)> AE (80.67%). Further, the reducing power, ABTS radical scavenging ability, and nitrite scavenging activity was observed in the same tendency as seen with the DPPH radical scavenging ability. However, the ferrous ion chelating activity of RE (85.45%) and AE (83.88%) was significantly higher than that of LTPE (75.60%). ${\alpha}$-Glucosidase inhibitory activities of RE and LTPE with a concentration of 100 mg% were significantly higher than AE. Xanthine oxidase, and acetylcholinesterase inhibitory activities of LTPE were higher than the other extracts. These results suggest that the extracts from Portulaca oleracea have the potential to act as functional materials, and components of Portulaca oleracea could be effective in the prevention of Alzheimer's disease, and may be used to develop various functional food products.

Acetylcholinesterase Inhibitory and Antioxidant Properties of Aster yomena Extract (쑥부쟁이 추출물의 아세틸콜린에스테라제 저해 및 항산화 활성)

  • Bae, Jong-Sup;Kim, Tae-Hoon
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.121-126
    • /
    • 2009
  • Objectives : To evaluate the radical scavenging and acetylcholinesterase (AChE) inhibitory activities of the ethylacetate (EtOAc)-soluble portion of a methanolic extract of Aster yomena, three different assay systems were performed. Methods : The antioxidant activity of A. yomena extract was tested as its capacity to scavenging free radicals of DPPH and $ABTS^+$, which has been widely used to evaluate the antioxidant activity of natural products from plant sources. AChE inhibitory activity was tested against mouse brain AChE by spectrophotometric method of Ellman using ELISA microplate reader. Results : The methanolic extract of A. yomena was fractionated and the EtOAc-soluble portion showed significant AChE inhibitory and free radical scavenging effects. Also the EtOAc-soluble portion revealed the highest phenolic contents as compared to the other extracts. Conclusions : These results indicate that phenolic compounds may be important constituents that give rise to the anti-AChE and antioxidative activities of A. yomena extract. Further phytochemical studies on this plant, for nutraceutical or pharmaceutical application, are warranted.

In vitro screening of the acetylcholinesterase inhibition, antioxidant activity, and neuronal cell protective effect of medicinal plant extracts (생약추출물의 acetylcholinesterase 저해, 항산화 및 신경세포보호 효과 in vitro 탐색)

  • Um, Min Young;Ha, Tae Youl;Seong, Ki Seung;Kim, Yong Sik
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.840-845
    • /
    • 2013
  • This study investigated the effects (i.e., the acetylcholinesterase activity, lipid peroxidation, and neuronal survival) of 20 kinds of medicinal water extracts. The water extracts of three medicinal plants - Cornus officinalis, Glycyrrhiza glabra, and Angelica gigas - were found to be the most effective on acetylcholinesterase inhibitory activity. In the lipid peroxidation-generating system induced by $H_2O_2/FeSO_4$ in rat brain homogenates, Perilla frutescens, Polygonum multiflorum, Cinnamomun cassia, and G. glabra exhibited protective activity against lipid peroxidation. The neuronal cell death induced by L-glutamate in PC12 was suppressed by the water extracts of G. glabra, Cinnamomun cassia, Platycodon grandiflorum, and Mentha arvensis at the concentration of $100{\mu}g/mL$. Taken together, these results showed that the water extract of G. glabra has the potential anti-dementia activity, which suggests that it might provide an effective strategy for improving dementia.

Acetylcholinesterase-based Biosensor for Detection of Residual Organophosphates and Carbamates Insecticides (유기인계 및 카바메이트계 농약을 측정할 수 있는 바이오 센서의 개발)

  • Kim, Young-Mee;Kim, Jin-Young;Cho, Moon-Jae;Chang Kong-Man;Hyun, Hae-Nam;Cho, Somi K.
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.315-321
    • /
    • 2006
  • Inhibitors of acetylcholinesterase(AchE), such as organophosphates and carbamates, interfere the action of AchE in nerve and may lead to a severe impairment of nerve functions or even death. Therefore, insect AchE is the biological target of predominant insecticides used in agriculture. Biosensors are sensitive and can be used as dispoisable sensors for environmental control. In recent years, the use of AchEs in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AchE as a biological recognition element is based on the inhibition the catalytic activity by the agents to be detected. We here present a strip-type biosensor based on AchE inhibition. In this study, acetylcholinesterase and PVA-SbQ(polyvinyl alcohol functionalized with methyl pyridinium methyl sulfate) were co-immobilized on immobilone-P membranes. Immobilization of the enzymes showed a stability in 6 months without activity loss in $4^{\circ}C$ storage. Enzymes immobilized on surfaces of membrane responded to organophosphates and carbamate more sensitivitive than enzyme in solution. Organophosphates and carbamates concentrations could be detected by entrapped and surface immobilized enzymes, in 5 min. For chlorpyrifos, carbofuran, cabaryl, and methidathion, the detection limits of AChE-strip were similar to that of HPLC/GC method.

Studies on the Biological Activity of Pleurotus ferulea (아위버섯(Pleurotus ferules) 추출물의 생리활성 탐색)

  • 홍기형;김병용;김혜경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.791-796
    • /
    • 2004
  • This study was peformed to screen the biological activities of Pleurotus ferulea (K5 and K8 strains). The cap of K5 strain is well developed than stalk, and vice versa in K8. The ethanol extract of Pleurotus ferulea exhibited significant free radical scavenging activity (35∼36%), suggesting possible effect on many degenerative diseases originated from the reaction of oxygen species. Acetylcholinesterase inhibitor is proven to be the most effective factor for Alzheimer disease induction, and ethanol extract of Pleurotus ferulea significantly inhibited acetylcholinesterase activity (25∼35%) in uitro. Moreover, ethanol extract of Pleurotus ferulea suppressed liver fibrosis by 3∼12% in uitro. However, Pleurotus ferulea feruled to inhibit glucose uptake in human intestinal cell line. Viability of gastric and colon cancer cells was also not affected by Pleurotus ferulea extract. In conclusion Pleurotus ferulea exhibited significant effect on free radical scavenging, acetylcholinesterase inhibiton and brain cell protection. However, Pleurotus ferulea failed to affect glucose uptake, and cytotoxicity of gastric and cancer cells. In general, K8 revealed more significant effects than K5.

Comparative Study of Bang-poong (root of Saposhnikovia divaricata Schischkin) and Related Species on Neuroprotective and Acetylcholinesterase Inhibitory Effects (방풍류(防風類) 약재(藥材)의 신경세포보호효과 및 아세틸콜린에스터라제 저해 효과 비교)

  • Ju, In Gyoung;Lee, Seungmin;Choi, Jin Gyu;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.29-37
    • /
    • 2019
  • Objectives : Bang-poong (Saposhnikovia divaricata; SD) was traditionally used to treat inflammatory disorders. In this study, we aimed to investigate whether Bang-poong and related species including SD, Glehnia littoralis (GL), and Peucedanum japonicum (PJ) possess neuroprotective effects and acetylcholinesterase (AChE) inhibitory activities. Methods : Roots of SD, GL and PJ were extracted with distilled water (DW) or 70% ethanol (EtOH). We assessed 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activities of the extracts. To examine neuroprotective effects, we measured cell viability in PC12 or HT22 cells after treatment of the extracts with $H_2O_2$ or amyloid-beta ($A{\beta}$). To assess anti-neuroinflammatory effects, we measured the nitric oxide (NO) levels after treatment with the extracts and lipopolysaccharide (LPS) in BV2 microglial cells. In addition, we performed AChE inhibition assay to explore effects of the extracts on the cholinergic system. Results : DW and EtOH extracts of SD, GL and PJ showed mild DPPH free radical scavenging activities. Also, DW extracts of GL and PJ showed protective effects against $H_2O_2$-induced toxicity in PC12 cells. In LPS-activated BV2 cells, EtOH extracts of SD, GL and PJ exerted inhibitory effects on NO production. Meanwhile, DW extracts of SD, GL and PJ inhibited the $A{\beta}$-induced cell death in HT22 cells. In addition, DW and EtOH extracts of GL exhibited remarkable inhibitory activities on AChE. Conclusions : We demonstrated that SD, GL and PJ exert anti-oxidative, anti-neuroinflammatory and AChE inhibitory activities. These results indicate that SD, GL and PJ could be potential candidates for neurological disorders.

Supplementary Effects of Lentinus edodes with Different Harvest Period and Part on Neurotransmitters and Lipid Peroxide Levels in the Brain of Diabetic Mice (채취 시기 및 부위가 다른 표고버섯의 급여가 당뇨 마우스 뇌조직의 신경전달물질 및 지질과산화물 수준에 미치는 영향)

  • Park, Hong-Ju;Kim, Dae-Ik;Lee, Sung-Hyon;Lee, Young-Min;Jeong, Hyun-Jin;Cho, Soo-Muk;Chun, Jye-Kyung;S. Lillehoj, Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1182-1187
    • /
    • 2005
  • This study was designed to investigate the supplementary effects of Lentinus edodes which were harvested at different time period and part on acetylcholine content and its related enzyme activities in the brain of diabetic mouse model (KK mouse). We fed mice with standard diet (Control diet; CON) or 4 different kinds of experimental diets (DGC: on time harvested, cap of Dong Go; DGS: on time harvested, stipe of Dong Go; HSC: late harvested, cap of Hyang Sin: HSS: late harvested, stipe of Hyang Sin) to KK mouse for 8 weeks. Neurotransmitter such as acetylcholine contents, acetylcholinesterase activities, monoamine oxidase-B ac-tivities and lipid peroxide contents in the brain were measured. The results showed that acetylcholine content was significantly higher in DGC and HSC groups than CON group. The activities of acetylcholinesterase and monoamine oxidase-B enzyme were significantly inhibited in the brain of DGC and HSC groups compared with CON group. Lipid peroxide content was lower in DGC group than CON group. These results suggested that the cap of Lentinus edodes which were harvested on time and late time contain increased acetylcholine content and decreased acetylcholinesterase activities, monoamine oxidase-B activities and lipid peroxide contents. Thus the cap of Lentinus edodes which were harvested at different time periods may play an effective role in enhancing cognitive function.