• Title/Summary/Keyword: acetyl group

Search Result 228, Processing Time 0.026 seconds

Effects of Oenanthe javanica, Coicis lachryma-jobi L. var., and Plantaginis asiatica L. Water Extracts on Activities of Key Enzymes on Lipid Metabolism (미나리 줄기(Oenanthe javanica), 율무(Coicis lachryma-jobi L. var.), 차전자(Plantaginis asiatica L.) 물 추출물이 지질대사)

  • Lee, Hyeon-Ju;Chung, Mi-Ja;Kim, Dae-Jung;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1516-1521
    • /
    • 2009
  • This study was carried out to estimate beneficial effects of medicinal plant [Oenanthe javanica (MNR), Coicis lachryma-jobi L. var. (YM), Plantaginis asiatica L. (CJJ)] water extracts on activities of key enzymes such as lipoprotein lipase (LPL), acyl-CoA synthetase (ACS) and carnitine acetyltransferase (CAT) on lipid metabolism. LPL and ACS were extracted from the epididymal adipose tissue and liver of Zucker lean rats (lean) and Zucker fatty rats (fa/fa). MNR or YM water extract treatment significantly reduced the activity of lean and fa/fa LPL. When 10000 ppm of MNR, YM, and CJJ water extracts were tested, they decreased fa/fa LPL activity by 32.5%, 30.1% and 22.8%, respectively. The lean ACS activity was significantly higher in YM water extract treatment compared to the control and the MNR water extract treatment significantly increased the activity of fa/fa ACS, compared to the activity in the control (p<0.05). MNR water extract activated fa/fa ACS activity by 12-fold compared with control at 10000 ppm concentration. CAT activity was significantly higher in 10000 ppm and 20000 ppm CJJ water extract treatment than in the control. Thus, the MNR, YM and CJJ water extracts may have beneficial effects due to activities of enzymes related with fat metabolism in obese humans.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

Effect of amaranth seed extracts on glycemic control in HepG2 cells (HepG2 세포에서 아마란스 종자 에탄올 추출물이 포도당 흡수 조절에 미치는 효과)

  • Park, So Jin;Park, Jong Kun;Hwang, Eunhee
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.603-617
    • /
    • 2021
  • Purpose: This study was carried out to investigate the effect of amaranth seed extracts on glycemic regulation in HepG2 cells. The 80% ethanol extracts of amaranth seeds were used to evaluate α-amylase and α-glucosidase activities, cell viability, glucose uptake and messenger RNA (mRNA) expression levels of acetyl-CoA carboxylase (ACC), glucose transporter (GLUT)-2, GLUT-4, insulin receptor substrate (IRS)-1 and IRS-2. Methods: The samples were prepared and divided into 4 groups, including germinated black amaranth (GBA), black amaranth (BA), germinated yellow amaranth (GYA) and yellow amaranth (YA). Glucose hydrolytic enzyme, α-amylase and α-glucosidase activities were examined using a proper protocol. In addition, cell viability was measured by MTT assay. Glucose uptake in cells was measured using an assay kit. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1 and IRS-2 were measured by reverse transcription polymerase chain reaction. Results: The inhibitory activities of α-amylase and α-glucosidase were highly observed in GBA, followed by BA, GYA and YA. Similar results were observed for glucose. The GBA effect was similar compared to the positive control group. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 were significantly increased. The potential hypoglycemic effects of amaranth seed extracts were observed due to the increase in glucose metabolic enzyme activity, and glucose uptake was mediated through the upregulation of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 expression levels. Conclusion: Our findings suggest that the amaranth seed is a potential candidate to prevent a diabetes. The present study demonstrated the possibility of using amaranth seeds, especially GBA and BA for glycemic control.

Effect of sweet pumpkin powder on lipid metabolism in leptin-deficient mice (Leptin 유전자 결핍 동물모델에서 단호박분말 투여가 지방대사변화에 미치는 영향)

  • Inae Jeong;Taesang Son;Sang-myeong Jun;Hyun-Jung Chung;Ok-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.469-482
    • /
    • 2023
  • Purpose: Obesity has emerged as a critical global public health concern as it is associated with and increases susceptibility to various diseases. This condition is characterized by the excessive enlargement of adipose tissue, primarily stemming from an inequity between energy intake and expenditure. The purpose of this study was to investigate the potential of sweet pumpkin powder in mitigating obesity and metabolic disorders in leptin-deficient obese (ob/ob) mice and to compare the effects of raw sweet pumpkin powder (HNSP01) and heat-treated sweet pumpkin powder (HNSP02). Methods: Leptin-deficient obese mice were fed a diet containing 10% HNSP01 and another containing 10% HNSP02 for 6 weeks. Results: The supplementation of ob/ob mice with HNSP01 and HNSP02 resulted in decreased body weight gain, reduced adipose tissue weight, and a smaller size of lipid droplets in the adipose tissue and liver. Furthermore, the ob/ob-HNSP01 and ob/ob-HNSP02 supplemented groups exhibited lower levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, and insulin, as well as a reduced atherogenic index in comparison with the control group. Molecular analysis also demonstrated that the intake of HNSP01 and HNSP02 resulted in a diminished activation of factors associated with fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase, while concurrently enhancing factors associated with lipolysis, including adipose triglyceride lipase and hormone-sensitive lipase, in the adipose tissue. Conclusion: Taken together, these findings collectively demonstrate the potential of sweet pumpkin powder as a functional food ingredient with therapeutic properties against obesity and its associated metabolic disorders, such as insulin resistance and dyslipidemia.

Inhibitory Effects of Rubus crataegifolius Leaf Water Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes

  • Mee-Kyung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.187-194
    • /
    • 2024
  • In this study, we examined the effects of Rubus crataegifolius leaf on the inhibition of differentiation and adipogenesis of 3T3-L1 preadipocytes to confirm their potential for use as an anti-obesity functional material. Rubus crataegifolius leaves water extracted using hot water were then concentrated for use, with an extract yield of 4.76%. The result of measuring the rate of 3T3-L1 cell survival of Rubus crataegifolius leaf extract (RCLE) showed growth inhibition of 13% at a concentration of 1,000 ㎍/mL. Thus, in this study, experiments were performed using RCLE treatment concentrations up to 500 ㎍/mL. Production of triglycedie in 3T3-L1 cells showed a dose-dependent decrease, and the rate of reduction was 28.7, 40.8, and 51.6% at concentrations of 100, 300, and 500 ㎍/mL, respectively, compared to the control group. In addition, the results confirmed that suppression of lipogenesis was achieved by suppressing the expression of peroxisome proliferator-activated receptor γ (PPAR γ), CCAAT/enhancer-binding protein α (C/EBP α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and increasing the expression of p-activated protein kinase (p-AMPK). Based on these results, it is believed that Rubus crataegifolius leaf extract can be used in the effort to manage obesity by regulating factors related to adipocyte differentiation and adipogenesis.

Effects of Melatonin on Preventing Postoperative Intraperitoneal Adhesion Formation in Rats (Rat에서 술후 복강 유착방지에 대한 melatonin의 효과)

  • Lee, Seung-Chan;Kim, Jung-Eun;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.23 no.3
    • /
    • pp.230-235
    • /
    • 2006
  • This study was performed in rats to find the minimum dose of melatonin that can effectively prevent the formation of postoperative intraperitoneal adhesions. Forty-two Sprague Dawley male rats were divided into six groups consisting of 7 rats, respectively. After celiotomy, five abrasions of $0.5{\times}1cm$ area were made on the antimesenteric serosal surface of the colon with a scalpel blade. The abdominal cavity was filled with 1 ml of solution containing 1 mg/kg(Mel 1), 3 mg/kg(Mel 3), 10 mg/kg(Mel 10), 30 mg/kg(Mel 30) and 5% ethanol solution(sham) through the catheter, using a sterile syringe before abdominal closure. Control group was given no adjuvant. The locations and values of adhesion were assessed through the second operation on the 14th day after the first operation. The adhesions were located on serosa to mesentery(54 of 210, 25.7%), serosa to serosa(44 of 210, 21%), serosa to omentum (12 of 210, 5.7%) and serosa to parietal peritoneum(0 of 210, 0%). The incidences of adhesion in Control, Sham, Mel 1, Mel 3, Mel 10 and Mel 30 were 68.6%, 91.4%, 57.1%, 60.1%, 17.1% and 20%, respectively. The values of adhesion separation in Mel 10 and Mel 30 group were lower than those in other groups. However, there was no significant(p<0.05) between Mel 10 and Mel 30 group. This study showed that 10 mg/kg of melatonin were effective in reducing the intraperitoneal adhesion.

Effect of Heat Processing on Thermal Stability of Kudzu (Pueraria thumbergiana Bentham) Root Isoflavones (가열처리가 칡 이소플라본의 열 안정성에 미치는 영향)

  • Choi, Sung-Won;Kim, Kyung-Seon;Hur, Nam-Yun;Kim, Kyung-Seon;Ahn, Soon-Cheol;Park, Cheon-Seok;Kim, Byung-Yong;Baik, Moo-Yeol;Kim, Dae-Ok
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1447-1454
    • /
    • 2008
  • Effect of heat processing on thermal stability of kudzu root isoflavone was investigated for future use such as various processed foods and functional foods. Kudzu root extracts were heated at 80, 100, 121, 140, 165, and $180^{\circ}C$ for up to 90 minutes before and after concentration, respectively. Changes in the amount of isoflavones were monitored using HPLC and thermal stability was investigated using Arrhenius equation. The amount of both daidzin and genistin decreased slightly during heating at 80, 100 and $121^{\circ}C$ but decreased significantly above $140^{\circ}C$. This indicated that daidzin and genistin are stable at temperatures near the boiling point of water. The degradation of both daidzin and genistin occurred in two steps and each step showed typical first order kinetic. The degradation rates were faster in the first step than the second step in both daidzin and genistin. Additionally, the degradation was accelerated when they heated after concentration compared to the sample heated before concentration. These results suggested that degradation of kudzu root isoflavone was highly dependent on both their concentration and heating temperature. This study provides the basic information on thermal stability of kudzu root isoflavones, which can be used for future processing of functional foods.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.