• Title/Summary/Keyword: acetic acid production

Search Result 655, Processing Time 0.032 seconds

Production of Hydrogen from Glucose by Rhodopseudomonas sphaeroides. (Rhodopseudomonas sphaeroides에 의한 수소 생산 -Glucose 및 유기산의 영향-)

  • 김미선;문광웅;이상근;김선창
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.89-95
    • /
    • 1998
  • Rhodopseudomonas sphaeroides K7 and E15-1 produced hydrogen from glucose rapidly for the first 24 hrs of culture under the anaerobic and photosynthetic conditions and then ceased the hydrogen production because of the accumulation of organic acids such as acetic acid and formic acid in the culture broth, decreasing the pH to 4.2-4.5. Only 43% and 73% of glucose in the culture were consumed even after 6 days of incubation by R. sphaeroides K7 and E15-1, respectively. The hydrogen production and glucose consumption, however, were substantially increased when the pH of the culture was adjusted to 6.8-7.0: Hydrogen production continues even after 10 days of culture and glucose was consumed completely after 2.5 and 4.5 days by R. sphaeroides K7 and E15-1, respectively, Furthermore, the bacteriochlorophyll contents in R. sphaeroides K7 and E15-1 were increased by 44 and 9 folds and the cell concentrations by 10 and 2.5 folds, respectively, after 7 days of culture. R. sphaeroides K7 and E15-1 also produced hydrogen from acetic, lactic, butyric and malic acids under the anaerobic and photosynthetic conditions even though the amounts of hydrogen produced were lower than that from glucose. The results of this experiment indicate that under the anaerobic and synthetic conditions R. sphaeroides K7 and E15-1 might use the NADH oxidation mediated by ferredoxin and hydrogenase to evolve hydrogen from glucose for the first 24 hrs and then the organic acids produced were used as electron donners for the production of hydrogen in the nitrogen-limited condition.

  • PDF

Study on the Simultaneous Production of the Bacterial Cellulose and Vinegar by Gluconacetobacter persimmonis KJ145T (Gluconacetobacter Persimmonis KJ145T를 이용한 Bacterial Cellulose및 식초의 동시 생산에 관한 연구)

  • 정용진;여수환;이오석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.981-985
    • /
    • 2003
  • The changes of component through simultaneous production of bacterial cellulose and vinegars by G. persimmonis KJ145$^{T}$ were examined. As a results, pH was decreased to 3.22 at 8 days of fermentation and total acidity showed 4.66 which was the highest at the 8 days of fermentation. Brix didn't show any changes during the fermentation period. Free sugars of fermentation broth were consist of fructose, glucose and sucrose. The fructose concentration of fermentation broth was maintained highly during fermentation period (until the final 10 days) without a remarkable decrease. The cell growth of G. persimmonis KJ145$^{T}$ was very rapidly increased from the 2 days of fermentation and increased most at the 4 days of fermentation. The productivity of bacterial cellulose was increased in proportion to the fermentation period. Malic acid, succinic acid and oxalic acid were detected as a organic acid of vinegar. The concentration of acetic acid was rapidly increased from the 2 days and reached highest concentration at 8 days. In conclusion, the results indicated that the 8 days was the optimal fermentation period to produce the bacterial cellulose and vinegar by G. persimmonis KJ145$^{T}$ simultaneously.

Studies on the Utilization of Orange Peel in the Spirit Vinegar Brewing (식초양조(食醋釀造)에 있어 밀감과피즙(果皮汁) 이용(利用)에 관(關)한 연구(硏究))

  • Kim, Yong Ho;Park, Yoon Joong;Sohn, Cheon Bae
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.108-116
    • /
    • 1981
  • A study was carried out to get the basic information about the brewing of spirit vineger from medium containing mandarin orange peel, and the results obtained were as follows. 1. The yield of peel to fruit was 29.0%. 2. The optimum concentration of peel extract for the acetic acid fermentation medium was about 25%. 3. Acetic fermentation was inhibited when the peel extract content of medium was over 70%. Also the maximum acidity of the medium which contained 90% of peel extract was declined up to 1% comparing to the medium contained 25% of peel extract. 4. In the acetic acid fermentation of medium containing 25% of orange peel extract under the aerobic condition, the average rate of acetic acid production was 0.062g/100ml. hr. and the rate of acetic acid production in log phase was 0.15g/100ml. hr. also the yield of product based on acetification was 91.4% 5. Oxalate, pyruvate, malate was detected in acetic acid fermentation medium. 6. The quality of vineger made from medium containing 25% of orange peel extract was good.

  • PDF

The Effect of Oligosaccharides on Ethylene Production in Mung Bean (Vigna radiata W.) Hypocotyl Segments

  • Choy, Yoon-Hi;Lee, Dong-Hee;Lee, June-Seung
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.295-300
    • /
    • 1996
  • The physiological effects of oligogalacturonic acid (OGA:D. P. 6-7), a product of acid hydrolysis of polygalacturonic acid (PGA), on ethylene biosynthesis in mung bean (Vigna radiata W.) hypocotyl segments was studied. Among PGA, OGA and monogalacturomic acid (MGA), only OGA stimulated ethylene production in mung bean hypocotyl segments, and the most effective concentraton of OGA was 50$\mu\textrm{g}$/mL. Time course data indicated that this stimulatiion effect of OGA appeared after 90 min incubation period and continued until 24 h. When indol-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were treated with OGA to investigate the mechanism of OGA on ethylene production, they did not show synergistic effects on ethylene production. The stimulation of ethylene production by OGA was due to the increase of in vivo ACC synthase activity, but OGA treatment had no effect of in vivo ACC oxidase activity. The effect of aminoethoxy vinyl glycine (AVG) and Co2+, the inhibitor of ethylene synthesis, was siminished a little by the OGA, but the treatment of Ca2+, known to increase ACC, with OGA did not increase the ethylene production, this effect seems to be specific for Ca2+ because other divalent cation, Mg2+, did not show the inhibition of OGA-indyuced ethylene production. It is possible that the OGA adopts a different signal transduction pathway to the ethylene bioxynthesis.

  • PDF

Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1

  • Romasi, Elisa Friska;Lee, Jinho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1726-1736
    • /
    • 2013
  • Biosynthesis of indole-3-acetic acid (IAA) via the indole-3-pyruvic acid pathway involves three kinds of enzymes; aminotransferase encoded by aspC, indole-3-pyruvic acid decarboxylase encoded by ipdC, and indole-3-acetic acid dehydrogenase encoded by iad1. The ipdC from Enterobacter cloacae ATCC 13047, aspC from Escherichia coli, and iad1 from Ustilago maydis were cloned and expressed under the control of the tac and sod promoters in E. coli. According to SDS-PAGE and enzyme activity, IpdC and Iad1 showed good expression under the control of $P_{tac}$, whereas AspC was efficiently expressed by $P_{sod}$ originating from Corynebacterium glutamicum. The activities of IpdC, AspC, and Iad1 from the crude extracts of recombinant E. coli Top 10 were 215.6, 5.7, and 272.1 nmol/min/mg-protein, respectively. The recombinant E. coli $DH5{\alpha}$ expressing IpdC, AspC, and Iad1 produced about 1.1 g/l of IAA and 0.13 g/l of tryptophol (TOL) after 48 h of cultivation in LB medium with 2 g/l tryptophan. To improve IAA production, a tnaA gene mediating indole formation from tryptophan was deleted. As a result, E. coli IAA68 with expression of the three genes produced 1.8 g/l of IAA, which is a 1.6-fold increase compared with wild-type $DH5{\alpha}$ harboring the same plasmids. Moreover, the complete conversion of tryptophan to IAA was achieved by E. coli IAA68. Finally, E. coli IAA68 produced 3.0 g/l of IAA after 24 h cultivation in LB medium supplemented with 4 g/l of tryptophan.

Characteristics of Cellulose Production by Acetobacter sp. A9 in Static Culture (정치배양에서 Acetobacter sp. A9에 의한 셀룰로오스 생산특성)

  • 손홍주;이오미;김용균;박연규;이상준
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.573-577
    • /
    • 2000
  • The optimum fermentation conditions for the production of cellulose by a newly isolated Acetobacter sp. A9 were determined in static cultures. The strain was able to produce cellulose at $25-30^{\circ}C$ with a maximum at $30^{\circ}C$. Cellulose production occurred at pH 6.5-8.0 with a maximum at pH 6.5. The optimal culture medium was found to consists of 1.0% glucose, 1.0% yeast extract, 0.7% polypeptone, 0.15% acetic acid and 0.02% succinic acid. Cellulose production by Acetobacter sp. A9 followed the growth curve. Highest cellulose production, under optimum conditions, was $24.1m^2$, although this strain typically produced only $12.1 g/m^2$ in the basic medium. Cellulose production also depended on the depth and volume of the medium.

  • PDF

Selective Removal of Acetic Acid for the Effective Production of Succinic Acid using the Various Amino Extractants and Solvents (효율적 숙신산 생산을 위한 다양한 아민추출제와 용매를 이용한 아세트산의 선택적 추출제거)

  • Huh Yun Suk;Hong Yeon Ki;Jun Young-Si;Hong Won Hi
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Succinic acid has recently been drawing much interest as a raw material for biodegradable polymer. In this study acetic acid was removed by reactive extraction with various amines dissolved in various diluents. Distribution coefficients were determined as the kind of amines, diluents, and pHs of continuous phase. The extraction capacity increased with the polarity of diluent and the decrease of pH from the artificial binary solution. Based on the different extractability for succinic acid and acetic acid from the artificial binary solution, the removal of acetic acid from fermentation broth was investigated using various amines and diluents. In addition, the extractability and selectivity of CLA for succinic acid and acetic acid from fermentation broth were higher than that of straight solvent extraction.

Characterization and Antimicrobial Activity of Lactic Acid Bacteria Isolated from Vaginas of Women of Childbearing Age (가임기 여성의 질에서 분리한 젖산 세균인 Lactobacillus plantarum UK-3의 특성 및 항균활성)

  • Ahn, Hye-Ran;So, Jae-Seong;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.308-315
    • /
    • 2011
  • The purpose of this work was to examine the antimicrobial activity derived from the lactic acid bacterium, UK-3 isolated from the vaginas of women of childbearing age. Various physiological and biochemical properties of this strain were characterized. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was designated as Lactobacillus plantarum UK-3, and registered in GenBank as [JK266589]. Growth rate, production of organic acids (e.g., lactic acid and acetic acid), and pH during growth were monitored. The maximum concentrations of lactic acid and acetic acid were approximately 684.11 mM and 174.26 mM, respectively, and pH changed from 7.0 to 3.7 after 72 h of incubation. High performance liquid chromatography was used to confirm lactic acid and acetic acid production. Significant antimicrobial activity of the concentrated supernatant was demonstrated against various Gram-positive (e.g., Staphylococcus aureus, Staphylococcus epidermidis, Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Neisseria species., Listeria monocytogenes), Gram-negative bacteria (e.g., Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis), and yeast (e.g., Candida albicans) by the plate diffusion method. As a result, the concentrated L. plantarum UK-3 cultures had lower acidity and inhibited the growth of all microorganisms tested, whereas the growth of L. acidophilus was not affected.

Surface Film Formation in Static-Fermented Rice Vinegar: A Case Study

  • Yun, Jeong Hyun;Kim, Jae Ho;Lee, Jang-Eun
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.250-255
    • /
    • 2019
  • In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0-3.3 and 3.0-8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ${\sim}1{\times}2{\mu}m$ in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.