• Title/Summary/Keyword: acetaldehyde dehydrogenase-2

Search Result 71, Processing Time 0.025 seconds

In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

  • Mun, Ju-Ae;Doh, Eun-Jin;Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2008
  • Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde and acetate on the enzyme in vitro. Hepatic FDH activity was not reduced by ethanol or acetate directly. However, acetaldehyde was observed to reduce the dehydrogenase activity of FDH in a dose- and time-dependent manner with an apparent $IC_{50}$ of 4 mM, while the hydrolase activity of FDH was not affected by acetaldehyde in vitro. These results suggest that the inhibition of hepatic FDH dehydrogenase activity induced by acetadehyde may play a role in ethanol toxicity.

The Effect of Puffer Fish Extract on the Acetaldehyde Metabolism in Rat (흰쥐에서 Acetaldehyde 대사에 미치는 복어추출물의 영향)

  • 김동훈;김동수;최종원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.187-191
    • /
    • 1994
  • The present stduy was undertaken to investigate the possible effect of Puffer fish skin extract (Pf) on the heptic acetaldehyde metabolism . It was obsrved that PF markedly decreased the acetaldehyde levels in blood and liver. The activity of mitochondrial aldehyde dehydrogenase (Ald DH) increased by induction of acute intoxicatiion of alcohol (5 g/kg) was further increased through pretreatment with PF for 2 weeks. When PF was given to rat fed with 25% alcohol solution instead of water for 6 weeks. the activity of Ald DH in mitochondrial fraction decreased to about 28% compared with sucrose-treated group. But after pretreatemnt of PF, the activity was restored to the normal level. By the treatment with disulfiram (300 mg/kg, once a day for 3days) was restored to the control after the pretreatment with PF. And also mitochondrial Ald DH activity in vitro was not changed. All these observations suggest that reduction of acetaldehyde levels are partly due to increase activity of mitochondrial Ald DH. Therefore, the recovery from intoxication of acetaldehyde may be enhanced by treatment with PF.

  • PDF

Effects of Biozyme on the Ethanol Metabolism in vivo and in vitro (바이오짐의 에탄올 대사에 대한 영향)

  • 남석우;박승희;윤성필;서동완;남태균;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Effects of $Biozyme_{R}$ and $\textrm{Business}_{R}$ on alcohol metabolism in rats, and on the activities of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) were studied in vitro. Alcohol concentration in rat blood was decreased after the treatment of Business(3.3 mι/kg, Biozyme 1.67 mg/wι) and Biozyme(3.3 mι/kg, 1.67 mg/mι) prior to the administration of ethanol(25%, 0.83 g/kg). And the acetaldehyde concentration of rat blood was also decreased when compared with control values in the same condition. Effects of Biozyme on ADH and ALDH activity were also studied. While the ALDH activity was elevated in the presence of Biozyme(2 $\mu\textrm{g}$/assay), the ADH activity was not influenced by Biozyme at the concentration range from 2 $\mu\textrm{g}$/assay to 0.2 mg/assay. In summary, Biozyme accelerated the rate of ethanol metabolism and the acceleration might be due to the increase in ALDH activity.vity.

  • PDF

Expression of Human Mitochondiral Aldehyde Dehydrogenase 2 in Mammalian Cells using Vaccinia Virus-T7 RNA Polymerase

  • Kang, Su-Min;Yoo, Seung-Ku;Lee, Ki-Hwan
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.41-44
    • /
    • 1999
  • Human mitochondrial aldehyde dehydrogenase 2 (ALDH2) is mainly responsible for oxidation of acetaldehyde generated during alcohol oxidation in vivo. A full-length cDNA of human liver ALDH2 was successfully expressed using a vaccinia virus-T7 RNA polymerase system. The expressed ALDH2 had an enzymatic activity as high as the native human liver ALDH2 enzyme.

  • PDF

Effect of Medicinal Plant Extracts on the Ethanol-Metabolizing Enzyme Activities (약용식물 추출물의 에탄올대사 효소활성에 미치는 영향)

  • Do, Jaeho;Gwak, Jungwon;Lee, Sunjeong;Rho, Jung Jin;Lee, Kwangseung;Kim, Dong Chung
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.286-291
    • /
    • 2017
  • This study was conducted to certify the effect of aqueous extracts from fifty medicinal plants on the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in vitro. Each aqueous extract was prepared by combining one-part medicinal plants with twenty-parts distilled water at $80^{\circ}C$ for 8 h. Among the fifty medicinal plants, Allium sativum L. and Cinnamomum cassia Presl were regarded as an effective anti-hangover substance. Allium sativum L. extract increased ALDH activity more than 2 times compared with ADH activity, enhancing the acetaldehyde degradation. Cinnamomum cassia Presl extract dramatically inhibited ADH activity compared with ALDH activity, thus potently decreasing the acetaldehyde formation. ADH and ALDH activities were proportionally inhibited according to the increased concentration of Cinnamomum cassia Presl extract. The aqueous extract of Cinnamomum cassia Presl at a concentration of $45.33{\mu}g/mL$ inhibited ADH activity by 52.8% and ALDH activity by 11.0%.

Specificity of Alcohol Dehydrogenase from Clostridium acetobutylicum ATCC 4259

  • Kim, Byung-Hong;Zeikus, J.-Gregory
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.268-272
    • /
    • 1992
  • Alcohol dehydrogenase activity of Clostridium acetobutylicum ATCC 4259 was studied for its specificity against substrates in acidogenic and solventogenic cultures. The bacterium reduces propionate, valerate and caproate added to the medium to the corresponding alcohols. Acetaldehyde, propionaldehyde, butyraldhyde, pentanal, and hexanal were used as the substrates by alcohol dehydrogenase, and all were reduced to the corresponding alcohols with varying affinities and reaction velocities. Acetaldehyde showed the lowest affinity and lowest velocity while the other aldehydes showed similar $K_m\;and\;V_max$ values. NADPH was used as the electron donor for the reduction of aldehydes. Alcohol dehydrogenase activity was low in acidogenic culture, and high in solventogenic culture.

  • PDF

Activity of Alcohol Dehydrogenase and Ethanol, Acetaldehyde Levels in Normal Adults Blood (정상인의 혈중 알코올 탈수소효소 활성도 및 에탄올, 아세트알데히드 농도에 관한 연구)

  • Kim, Ki-Woong;Yang, Jeong Sun;Lee, Jong-Seong;Cho, Young-Sook;Kang, Seong-Kyu;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.240-247
    • /
    • 1994
  • To identify normal levels of ethanol, acetaldehyde and alcohol dehydrogenase(ADH) activity in blood of Koreans, ethanol and acetaldehyde levels, activity of ADH in blood of Koreans, ethanol and acetaldehyde levels, activity of ADH in blood were measured in 97 subjects(male : 36, female : 61), 45 subjects(male : 21, female : 24) were not exposed to organic solvents and any other chemicals. Fifty two subjects(male : 15, female : 37) were exposed to organic solvents including toluene and xylene. The results were summerized as follows : 1. The blood ADH was not detected in exposed and non-exposed group. 2. The average blood ethanol level of non-exposed group was 0.0490 mg/dl, and exposed group was 0.0363 mg/dl. They were statistically significant(p<0.05). 3. The blood acetaldehyde levels in exposed group were significantly higher than that of non-exposed group was not statistically significant (p>0.05). 4. The average blood ethanol level of males in both groups was significantly higher than that of females, however, they were not statistically significant (p>0.05).

  • PDF

Effect of the Mixture of Pueraria lobata and Sorbus commixta Extract on the Alcohol-induced Hangover in Rats

  • Hong, Se Chul;Yoo, Ji Hyun;Oh, Myeong Hwan;Lee, Hwan;Park, Young Sik;Parthasarathi, Shanmugam;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2015
  • Pueraiae Radix (PR), Pueratia Folium (PF) and Sorbus commixta (SC) mixture, namely GS-SP (PR (1)/PF (2)/SC (0.5): v/v/v) was developed as hangover-relieving elixir and its effects on alcoholic metabolism have been investigated. The enzymatic activity of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) of GS-SP was shown higher than those of single treatment with PR, PL, SC, and the positive control group (YM-808). The survival rate of mouse liver cell line NCTC clone 1469 in the presence of acetaldehyde was 30.6, 22.2, and 8.7% at the GS-SP dosage level of 50, 100, and 200 μg/mL respectively. Different concentrations of 50, 100 and 200 mg/kg of GS-SP showed efficient activity for ADH and ALDH than YM-808 in rat fed with 25% ethanol. The levels of blood alcohol and acetaldehyde after oral administration of 200 mg/kg of GS-SP showed efficient activity of 11.7% and 37% than those of YM-808. These results have been supported to the potential for GS-SP to serve as an excellent potential in providing hangover relief and liver protection.

Kinetic Studies of Parent Compounds and Its Metabolite by Combined Treatment of Allyl Alcohol with Ethanol in vivo (Allyl Alcohol 및 Ethanol 혼합투여에 의한 혈중 농도 변화 및 독성과의 상관성)

  • 이주영;정승민;이무열;정진호
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.557-562
    • /
    • 1998
  • Allyl alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase (ADH), subsequently to acrylic acid by aldehyde dehydrogenase (ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have determined the plasma concentrations of allyl alcohol and ethanol followed by combined treatment. Pretreatment of rats with 2g/kg ethanol followed by ip administration of 40mg/kg allyl alcohol increased the lethality significantly. Determination of in vivo blood concentrations revealed that ethanol pretreatment caused the apparent decrease in allyl alcohol clearance, whereas acetaldehyde level in blood increased significantly by allyl alcohol treatment, as determined by head space GC analysis. Treatment of 4-methylpyrazole, an inhibitor of ADH, delayed allyl alcohol elimination significantly and reduced its lethality. Collectively, these findings suggested that reduction of allyl alcohol clearance in the presence oj ethanol was mediated through ADH competitive inhibition.

  • PDF

Effect of Fermented Herbal Extracts, HP-1 on Enzyme Activities and Gene Expressions Related to Alcohol Metabolism in Ethanol-loaded Rats (발효한약추출물 HP-1이 알코올을 투여한 쥐의 알코올 대사에 미치는 영향)

  • Jung, Yong-Joon;Han, Dong-Oh;Choi, Bo-Hee;Park, Chul;Lee, Hye-Jung;Kim, Sung-Hoon;Hahm, Dae-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.387-391
    • /
    • 2007
  • Recently, much attention has been paid to developing various kinds of fermented herbal extracts, a new type of traditional herbal medicine, in the field of Korean traditional medicine. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailavility and pharmacological activity of herbal extract in the gastrointestinal tract. It also produces a number of fermentation products that intensify the nutritional and pharmacological aspects of the medicinal herbs. In order to develop a functional beverage of alleviating the aftereffects of the previous drinks, the extracts (HP-1) of fermented herbal mixture, including Artemisia capillaris Thunb., Lonicera japonica Thunberg, and Hovenia dulcis Thunb., were prepared and the medicinal effect as a hangover cure was evaluated in ethanol-loaded rats. The enzyme activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase-2 (ALDH2) were analyzed by measuring the concentration of blood ethanol and acetaldehyde. The mRNA expression of ADH and ALDH2 was also investigated through RT-PCR analysis. In the HP-1-treated group, the concentration of blood ethanol was significantly reduced at one hour after loading of ethanol, as compared to that in the saline-treated group. The reduced ethanol was converted to acetaldehyde, which resulted in rapid increase in acetaldehyde concentration in an hour. Acetaldehyde was started to decrease at 5 hours after ethanol loading. It implies that HP-1 is highly effective to stimulate the activities of ADH and ALDH2. The HP-1 treatment also activated the mRNA expression of ADH and ALDH. This study suggests that fermented herbal extract, HP-1 can be used as a functional beverage of alleviating the alcohol-induced hangover symptoms by stimulating the activities and gene expression of hepatic alcohol metabolizing enzymes.