• Title/Summary/Keyword: accurate moving distance measurement

Search Result 19, Processing Time 0.021 seconds

An Accurate Moving Distance Measurement Using the Rear-View Images in Parking Assistant Systems (후방영상 기반 주차 보조 시스템에서 정밀 이동거리 추출 기법)

  • Kim, Ho-Young;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1271-1280
    • /
    • 2012
  • In the recent parking assistant systems, finding out the distance to the object behind a car is often performed by the range sensors such as ultrasonic sensors, radars. However, the installation of additional sensors on the used vehicle could be difficult and require extra cost. On the other hand, the motion stereo technique that extracts distance information using only an image sensor was also proposed. However, In the stereo rectification step, the motion stereo requires good features and exacts matching result. In this paper, we propose a fast algorithm that extracts the accurate distance information for the parallel parking situation using the consecutive images that is acquired by a rear-view camera. The proposed algorithm uses the quadrangle transform of the image, the horizontal line integral projection, and the blocking-based correlation measurement. In the experiment with the magna parallel test sequence, the result shows that the line-accurate distance measurement with the image sequence from the rear-view camera is possible.

Improved Trilateration Method on USN for reducing the Error of a Moving Node Position Measurement (무선센서네트워크에서 삼변측량법 기반 이동노드 위치 오차를 줄이는 탐색기법)

  • Mun, Hyung-Jin;Jeong, Hee-Young;Han, Kun-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.301-307
    • /
    • 2016
  • The location measurement technique of moving worker in dangerous areas, is necessary for safety in the mines, basements, warehouses, etc. There are various measurement techniques about moving node of position in a restricted environment. Trigonometric Method, one of measurement techniques, is commonly used because of its easiness. However, errors occur frequently when measuring distance and position due to radio interference and physical disability with measuring instruments. This paper proposed a method which is more accurate and shows reduced margin of error than existing trigonometric method by recalculating distance between Anchor and moving node with various measuring instruments. By adding Anchor when calculating distance and position of moving node's estimated point, suggested technique obtains at least 41% efficiency compared to existing method.

Design of System for Accurate Tracking Services in Environments with Obstacles

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.161-165
    • /
    • 2021
  • Since the first commercialization of beacon-based services in 2011, various services have been provided to improve Bluetooth performance, and research has been conducted to accurately recognize user locations using beacons. The various measurement methods of indoor positioning systems (IPS) include methods using receiver signal strength indicator (RSSI) the strength of which varies greatly in accuracy depending on whether there are obstacles such as cement walls or doors. In this paper, we present a method to provide accurate positioning services even in the presence of obstacles in indoor spaces. To this end, we connect the HM-10 module supporting the beacon with Arduino Uno, to place beacons in three directions in real-world indoor space, and derive an optimal trilateration equation. Based on the derivation, we select the optimal expression for calculating the distance between the beacon and the moving station and use it to verify the coordinate determination for the moving station.

Active Focusing Technique for Extracting Depth Information (액티브 포커싱을 이용한 3차원 물체의 깊이 계측)

  • 이용수;박종훈;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.40-49
    • /
    • 1992
  • In this paper,a new approach-using the linear movement of the lens location in a camera and focal distance in each location for the measurement of the depth of the 3-D object from several 2-D images-is proposed. The sharply focused edges are extracted from the images obtained by moving the lens of the camera, that is, the distance between the lens and the image plane, in the range allowed by the camera lens system. Then the depthin formation of the edges are obtained by the lens location. In our method, the accurate and complicated control system of the camera and a special algorithm for tracing the accurate focus point are not necessary, and the method has some advantage that the depth of all objects in a scene are measured by only the linear movement of the lens location of the camera. The accuracy of the extracted depth information is approximately 5% of object distances between 1 and 2m. We can see the possibility of application of the method in the depth measurement of the 3-D objects.

  • PDF

A Study on Distance Calculation Revision Algorithm using the Filtering of RSSI Measurement Results (RSSI 측정결과 필터링을 이용한 거리계산 보정 알고리즘에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • The indoor location based service proposed in the study was assigned to target a moving user. Positioning in the outdoor environment is accurate while using GPS. However, in an indoor environment, positioning is inaccurate and difficult. In order to overcome this, studies of various techniques for positioning based on wireless communication such as Wi-Fi, Zigbee and Bluetooth are being performed. The RSSI value and the delivery signal of the bluetooth beacon are measured according to the distance, and to a database. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance. When average and feedback filtering coefficient are set with 0.5, irregular and highly RSSI values are decreased. As the distance increases, the range of error is confirmed to have a reduction when using a distance calculation correction algorithm. Finally, when using the RSSI measurement results filtering, it corrects an unstable signal. Also, the distance correction algorithm is used to reduce a range of errors.

The development of indoor location measurement System using Zigbee and GPS (Zigbee와 GPS를 이용한 실내 위치 인식 시스템 개발)

  • Ryu, Jeong-Tak;Kim, In-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This paper proposes a new indoor location recognition system using a ZigBee network and a global positioning system(GPS). The proposed location recognition system applies GPS values that are mainly used for outdoor location recognition, to indoor location recognition; hence the techniques conventionally separated for the indoor and outdoor location recognition are integrated into one location recognition technique. The proposed system recognizes a location using the distance between nodes. Although the distance between nodes can be calculated by measuring the strength of the received ZigBee signals, generally the measured distance is not accurate and has high error rates since the strength of the ZigBee signals is different depending on the distance. In order to reduce the error rate, we have subdivided the output power of the received ZigBee signals into five levels. When a moving node generates a signal, each fixed node transmits the received signal strength and its own GPS information to other nodes, so the moving node can find its own accurate location in terms of the received signals.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.

A Study on Navigation Sensor System for Outdoor AGV Using AMR Sensors (AMR센서를 이용한 옥외용 AGV 주행센서 시스템에 관한 연구)

  • 김성호;박경섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • A navigation sensor system for outdoor AGV(Automatic Guided Vehicle) using AMR(Anisotropic Magnetoresitive) sensors is described. We derive a formula of the position of AMR sensor using the measured magnetic field intensity due to permanent magnet with constant distance. The system consists of sensor board. sensor control board and position processing board. The sensor board measures magnetic field intensity, the sensor control board controls the measurement of six sensors sequentially, and the position processing board computes the accurate position of the permanent magnet using Least Square Method. We arranged six sensors at intervals of 30cm and measured the position of the permanent magnet moving at intervals of 30cm. Experimental results showed that we can get standard deviation of 2mm and error of &\pm&4.5mm at a height of 20cm from the permanent magnet.

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.