장소 브랜딩은 특정 장소에 대한 의미 부여를 통해 장소성의 정체성 및 공동가치를 생성하며 가치 창출을 하는데 중요한 활동이며, 장소 브랜드에 대한 이미지 파악을 통해 이루어진다. 이에 마케팅, 건축학, 도시건설학 등 여러 분야에서는 인상적인 장소 브랜드의 이미지를 구축하기 위하여 많은 노력을 기울이고 있다. 하지만 설문조사를 포함한 대면조사 방법은 대부분 주관적인 작업이며 측정에 많은 인력 또는 고도의 전문 인력이 소요되어 고비용을 발생시키므로 보다 객관적이면서도 비용효과적인 브랜드 이미지 조사 방법이 필요하다. 이에 본 논문은 텍스트마이닝을 통하여 장소 브랜드의 이미지 강도를 객관적이고 저비용으로 얻는 방법을 찾는 것을 목적으로 한다. 제안하는 방법은 장소 브랜드 이미지를 구성하고 있는 요인과 그 키워드들을 관련 웹문서에서 추출하며, 추출된 정보를 통해 특정 장소의 브랜드 이미지 강도를 측정하는 방법이다. 성능은 안홀트 방법에서 평가에 사용하는 전세계 50개 도시 이미지 인덱스 순위와의 일치도로 검증하였다. 성능 비교를 위해 임의로 순위를 매기는 방법, 안홀트의 설문방식대로 일반인이 평가하는 방법, 본 논문의 방법을 사용하되 안홀트의 방법으로 학습한 것으로 유의한 것으로 추정되는 평가 항목만을 반영하는 방법과 비교하였다. 그 결과 제안된 방법론은 정확성, 비용효율성, 적시성, 확장성, 그리고 신뢰성 측면에서 우수함을 보일 수 있었다. 따라서 본 연구에서 제안한 방법론은 안홀트 방식에 상호 보완적으로 사용될 수 있을 것이다. 향후에는 장소 브랜드 이미지를 형성하는 속성 별로 등장횟수를 계산 한 후에 장소 브랜드에 대한 태도, 연상, 그리고 브랜드 자산과의 인과관계를 자동으로 파악할 수 있는 부분까지 구현하고 실증적 실험을 할 예정이다.
목적 : 부항요법은 국소적 부위를 진공상태로 유지시키는 과정 중 유두층 안의 표피혈관을 파괴됨에 따라 발생하는 색소, 응결, 자반, 수포, 압통 반응 등을 살피어 오장육부의 기능이상을 진단하고 있다. 시각에 의존하는 주관적인 혈색소 판별로 인한 진단방법에서 벗어나 정량적으로 측정 및 분석이 가능하기 위하여 교차편광 촬영술을 접목하였으며, 새로운 혈색소 평가 가능성을 확인하고자 하였다. 방법 : 족태양방광경의 좌/우 폐수(BL13), 심수(BL15), 간수(BL18), 신수(BL23) 총 10개에 80 kPa 의 음압으로 1분 동안 자극하였다. 교차편광 촬영술을 이용하여 부항 자극 직전과 60분 이후까지 2분마다 이미지를 획득하였다. 획득한 이미지에서 $L^*a^*b^*$ space로 변환하여 분석하였으며, RGB space에서 홍반지수 (E.I: erythema index)를 계산하여 분석하였다. 또한 부항 자극 전 각 경혈에서 젖산 농도를 측정하여 색 지표들간의 관계성 분석을 통하여, 근육의 상태와 부항 자극으로 유도된 피부 색 변화와의 관계를 확인하고자 하였다. 결과 : 교차편광 촬영술을 이용하여 획득한 이미지에서의 $L^*$, $a^*$ 그리고 E.I 모두 부항 자극에 따른 피부 색 변화를 정량적으로 나타낼 수 있는 유의한 지표임을 확인하였다. 부항 자극 40분 후에 피부 색 변화가 더 이상 관찰되지 않았다. 또한 각 경혈에서의 젖산 농도와 피부 색 변화 정도와 유의한 차이가 없음을 확인하였다. 결론 : 설진을 포함하여 한의학적 색 진단을 하기 위한 방법으로 교차편광 촬영술 활용 가능성을 확인하였다. 또한 $L^*$, $a^*$ 그리고 E.I 모두 색 지표로서 유의성을 확인하였다. 향후, 장부 기능 이상과 혈색소 반응간의 상관성을 확보하기 위한 연구가 진행하기 전에, 음압 도중 발생하는 조직 내 다양한 반응과 혈색소 반응간의 관계를 확보하고자 하는 노력이 우선적으로 진행되어야 한다.
국토 대부분이 산림으로 구성되어 있는 대한민국은 매 년 많은 산불이 발생한다. 산불은 토양의 전단강도를 약화시켜 산사태에 취약한 토양층을 만들기도 하고, 수목의 복구가능여부에 따라 다른 계획 설립이 필요하기 때문에 산불피해면적 뿐만 아니라 피해강도에 대한 파악도 중요하다. 위성 원격탐사를 통한 산불피해강도 추정 연구가 많이 수행되어 왔으나, NDVI(Normalized Difference Vegetation Index)와 NBR(Normalized Burn Ratio) 등과 같은 단일 인자의 시계열 변화만을 이용하여 피해강도를 파악하기에는 한계가 있다. 본 연구에서는 Sentinel-1A SAR-C (Synthetic Aperture Radar-C)와 Sentinel-2A MSI(Multi Spectral Instrument)센서의 자료를 이용하여 기계학습방법을 통한 산불 피해강도 탐지 모델들을 제시하였다. 2017년 5월 삼척, 2019년 4월 강릉·동해, 2019년 4월 고성·속초 총 세개의 산불사례를 이용하여 RF(Random forest), LR(Logistic regression), SVM(Support Vector Machine)기계학습 모델을 구축하였다. 연구결과, random forest 모델이 82.3%의 총정확도로 가장 높은 성능을 보여주었다. 모델의 범용성 및 학습자료 민감도 확인을 위해 사례교차검증도 추가 시행하였는데, 그 결과 사례들의 시기적 차이에 의한 식생활력 및 재생도의 차이에 민감도가 높음을 확인하였다. 이는 추후 다양한 시공간적 사례를 추가할 시 개선이 될 것으로 보인다.
목 적: 전이성 뇌종양 환자에서 전뇌조사를 시행받은 160명의 환자를 대상으로 원발 종양 가중치에 따른 생존율을 후향적으로 분석해보고자 하였다. 대상 및 방법: 2002년부터 2008년 사이에 인하대병원에서 전이성 뇌종양으로 진단받은 암환자들 중 전뇌 조사 방사선 치료 30 Gy를 받은 160명의 환자를 대상으로 후향적으로 분석하였다. 원발성 종양이 유방암인 경우는 20명, 폐암인 경우는 103명이었다. 160명의 환자 중 척수 연수막 전이(leptomeningeal seeding) 환자를 제외한, 142명의 환자를 대상으로 예후 인자 및 Recursive Partitioning Aanalysis (RPA) 분류에 따른 생존율, 중앙생존기간과, RPA 분류에 원발 종양의 종류에 따라 가중치를 둔 새로운 Weighted Partitioning Analysis (WPA) 분류에 따른 생존율과 중앙생존기간을 분석하였고 RPA분류와 비교 분석하였다. 결 과: RPA분류에 의한 중앙생존기간은 분류 I (8명), 분류 II (76명), 분류 III (58명)가 각각 20.0개월, 10.0개월, 3.0개월이었으며(p=0.003), WPA 분류의 경우에는 분류 I (3명), 분류 II (9명), 분류 III (70명), 분류 IV (60명)가 각각 36개월, 23.7개월, 10.9개월, 8.6개월로(p=0.001) RPA 분류보다 더 우위성을 보였다. 결 론: 새로운 예후 지표인 WPA 분류가 기존의 RPA 분류보다 전이성 뇌종양 환자에서 치료 방침을 결정함에 있어 도움을 줄 것으로 생각된다.
본 연구에서는 미국의학물리학회 TG-119 보고서를 통해 본 원에 도입된 다이나로그 파일을 이용한 정도관리 소프트웨어(MobiusFx, MFX)로 부피세기조절회전치료의 정도관리를 시행하였다. 본 원의 치료계획장치를 이용해서 각각의 치료계획을 수립하였고, 절대선량은 표적 및 위험장기에서 전리함을 이용해 측정하였으며, 상대선량분포는 반도체검출기배열($Delta^{4PT}$)과 정도관리 소프트웨어(MFX)를 사용하여 측정하였다. 절대선량 평가에서 점 선량을 측정하였다. 표적과 위험장기에서 평균 선량 오차율은 각각 $1.41{\pm}0.92%$, $0.89{\pm}0.86%$였다. 점 선량 평가의 신뢰도를 나타내는 95% 신뢰한계는 각각 표적에서 3.21(96.79%), 위험장기에서 2.58(97.42%)로, 보고서에서 제시한 허용기준인 표적에서 4.5(95.50%), 위험장기에서 4.7(95.30%) 이내에 모두 만족하였다. 상대선량 평가는 선량 분포를 이용하여 감마지표 분석법으로 분석하였다. 정도관리 소프트웨어와 반도체검출기 배열의 평균 감마지표 통과율은 3%/3 mm의 허용기준에서 $99.90{\pm}0.14%$, $99.78{\pm}0.20%$였고, 2%/2 mm의 허용기준에서는 $97.98{\pm}1.97%$, $96.86{\pm}1.76%$로 나타났다. 감마지표 통과율의 신뢰도를 나타내는 95% 신뢰한계는 허용기준 3%/3 mm에서 정도관리 소프트웨어와 반도체 검출기배열 각각 0.38(99.62%)과 0.62(99.38%)였고 2%/2 mm에서는 5.88(94.12%)과 6.60(93.40%)으로 보고서에서 제시한 허용기준인 표적과 위험장기에서 7.0(93.0%) 이내에 만족함을 확인하였다. 따라서 이번 연구를 통해 본 원의 정도관리 소프트웨어가 부피세기조절회전치료의 정도 관리 시스템으로서 간편하고 편리한 유용한 도구로 임상에 응용할 수 있을 것으로 사료된다.
목 적 : 베를린 설문은 시행이 간편하고 비용이 들지 않아 전 세계적으로 가장 많이 사용되는 폐쇄성수면무호흡의 선별 검사 중 하나이다. 최근까지 다양한 문헌을 통해 베를린 설문의 유용성에 대한 결과가 보고 되고 있다. 본 연구에서는 수면 클리닉을 내원한 환자들을 대상으로 폐쇄성수면무호흡을 선별하는 도구로서 베를린 설문의 유용성을 평가하였다. 방 법 : 코골이 및 수면 중 무호흡 등의 증상으로 수면 클리닉을 내원한 121명을 대상으로 베를린 설문 및 수면다원검사를 시행하였다. 전체 분석 대상자를 폐쇄성수면무호흡의 중증도에 따라 인구학적 특성 및 수면다원검사상 수면 변인 및 호흡 변인에 따라 분석하였으며 또한 선별검사로서의 유용성을 평가하기 위해 중증도에 따라 베를린 결과의 민감도, 특이도, 양성 예측도, 음성 예측도 등을 통계 분석하였다. 결 과 : 전체 연구 대상을 폐쇄성수면무호흡의 중증도에 따라 분류하였을 때 정상 25명(20.6%), 경도 30명(25%), 중등도 26명(21.4%), 중증 40명(33%)의 분포를 보였다. 베를린 설문 결과상 고위험군은 84명(69.4%), 저위험군은 37명(30.6%)으로 나타났다. 폐쇄성수면무호흡의 진단에 있어 베를린 설문의 민감도와 특이도는 AHI 5를 기준으로 71.9%, 40%, AHI 15를 기준으로 75.8%, 38.2%, AHI 30을 기준으로 77.5%, 34.6%였으며 정확도는 65.3%였다. 결 론 : 베를린 설문은 수면 클리닉을 방문한 환자를 대상으로 하였을 때 폐쇄성수면무호흡의 선별 도구로서의 유용성은 높지 않았다.
폐쇄성 수면 무호흡 환자들의 양압기 사용을 위한 적정 양압측정은 편리함과 경제성뿐만 아니라 다양한 원인으로 CPAP 측정법보다는 APAP 측정법을 더 선호한다. 그러나 PSG 감시하에 진행하는 CPAP 측정법보다 정확성에 대한 의문이 아직까지 남아있다. 이에 본 연구에서는 동일한 대상자에 대한 CPAP과 APAP 측정법의 적정 압력과 무호흡-저호흡 지수를 변수로서 두 방법간의 효율성과 정확성을 비교하였다. 대상자는 분할 수면다원검사 중 CPAP 양압 측정과 7일 이상 APAP 양압 측정에 성공한 79명이 모집되었다. CPAP과 APAP 측정법의 적정 양압은 $7.0{\pm}1.8cmH_2O$, $7.6{\pm}1.6cmH_2O$ 무호흡-저호흡 지수는 $1.3{\pm}1.5/h$, $3.0{\pm}1.7/h$로 CPAP 측정법이 두 변수 모두 통계적으로 유의하게 낮게 나타났다(P<0.001). 그러나 미국수면학회 가이드라인 무호흡-저호흡 지수 5/h이하의 적정 양압 도달 비율은 CPAP 측정법이 96.2% (76명), APAP 측정법이 94.9% (75명)으로 유의미한 차이를 보이지 않았다(r=-0.045, P=0.688). 본 연구를 요약하면, CPAP은 APAP 측정법보다 좀 더 효율적인 측정법으로 나타났다. 그렇지만 적정 양압에 도달하는 비율은 두 방법 모두 통계적 차이를 나타내지 않아 정확성을 가진다. 따라서 CPAP과 APAP 측정법 중 요구되는 상황에 따라 적절한 방법을 선택하여 적정 양압을 측정할 수 있겠다.
현재 한우 후보씨수소는 당대검정을 거쳐 12개월령 체중의 육종가와 근내지방도의 혈통지수를 근거로 선발이 이뤄진다. 여기서 이용되는 혈통지수는 실제 검정을 통하여 얻은 능력이 아니라 혈통과 KPN의 능력을 근거로 산출한 능력으로써 정확도가 그리 높지 않다. 그리고 후보씨수소에 대한 후대검정은 현재 검정소 검정과 현장 후대검정으로 나뉘어져 있다. 현장 후대검정의 경우 24개월령 도축이 어렵기 때문에 검정소와 현장 후대검정우를 동시에 비교하기는 쉽지 않다. 따라서 본 연구는 이와 같이 12개월령에 측정이 불가한 선발형질과 현장 후대검정우와 검정소 검정우의 도축시기의 차이를 해소하기 위하여 초음파 측정 기술을 적용하여 도체형질 유전능력을 간접적으로 평가 가능한지 파악하기 위하여 수행 하였다. 연구수행을 위하여 2008년도부터 2013년까지 농협중앙회 한우개량사업소 및 한우육종농가에서 수집한 한우 당 후대검정 자료를 이용하였으며 분석형질로는 12개월령 체중, 12 24개월령 초음파 형질(등심단면적, 등지방두께, 둔부지방, %지방함량) 및 도체형질(도체중, 등심단면적, 등지방두께, 근내지방도)을 이용하였다. 초음파 형질에 대한 환경효과 분석을 통하여 차수-측정일-우사-촬영자-판독자를 동기우군으로 하고 측정 시 체중을 공변량으로 한 모형을 토대로 유전모수를 추정하였다. 그 결과 12개월령 및 24개월령 초음파 형질들에 대한 유전력은 각각 0.21-0.43, 0.32-0.47이었으며 12 24개월령 초음파 형질과 대응되는 도체형질이 각각 0.52-0.75, 0.86-0.89로 높은 유전상관을 보이는 것으로 나타났다.
최근 텍스트 분석을 딥러닝에 적용한 연구가 꾸준히 이어지고 있으며, 특히 대용량의 데이터 셋을 학습한 사전학습 언어모델을 통해 단어의 의미를 파악하여 요약, 감정 분류 등의 태스크를 수행하려는 연구가 활발히 이루어지고 있다. 하지만 기존 사전학습 언어모델이 특정 도메인을 잘 이해하지 못한다는 한계를 나타냄에 따라, 최근 특정 도메인에 특화된 언어모델을 만들고자 하는 방향으로 연구의 흐름이 옮겨가고 있는 추세이다. 도메인 특화 추가 사전학습 언어모델은 특정 도메인의 지식을 모델이 더 잘 이해할 수 있게 하여, 해당 분야의 다양한 태스크에서 성능 향상을 가져왔다. 하지만 도메인 특화 추가 사전학습은 해당 도메인의 말뭉치 데이터를 확보하기 위해 많은 비용이 소요될 뿐 아니라, 고성능 컴퓨팅 자원과 개발 인력 등의 측면에서도 많은 비용과 시간이 투입되어야 한다는 부담이 있다. 아울러 일부 도메인에서 추가 사전학습 후의 성능 개선이 미미하다는 사례가 보고됨에 따라, 성능 개선 여부가 확실하지 않은 상태에서 도메인 특화 추가 사전학습 모델의 개발에 막대한 비용을 투입해야 하는지 여부에 대해 판단이 어려운 상황이다. 이러한 상황에도 불구하고 최근 각 도메인의 성능 개선 자체에 초점을 둔 추가 사전학습 연구는 다양한 분야에서 수행되고 있지만, 추가 사전학습을 통한 성능 개선에 영향을 미치는 도메인의 특성을 규명하기 위한 연구는 거의 이루어지지 않고 있다. 본 논문에서는 이러한 한계를 극복하기 위해, 실제로 추가 사전학습을 수행하기 전에 추가 사전학습을 통한 해당 도메인의 성능 개선 정도를 선제적으로 확인할 수 있는 방안을 제시한다. 구체적으로 3개의 도메인을 분석 대상 도메인으로 선정한 후, 각 도메인에서의 추가 사전학습을 통한 분류 정확도 상승 폭을 측정한다. 또한 각 도메인에서 사용된 주요 단어들의 정규화된 빈도를 기반으로 해당 도메인의 특수성을 측정하는 지표를 새롭게 개발하여 제시한다. 사전학습 언어모델과 3개 도메인의 도메인 특화 사전학습 언어모델을 사용한 분류 태스크 실험을 통해, 도메인 특수성 지표가 높을수록 추가 사전학습을 통한 성능 개선 폭이 높음을 확인하였다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.