• Title/Summary/Keyword: accumulated strains

Search Result 73, Processing Time 0.024 seconds

The Cadmium Biosorption Mechanism in Gram Negative Bacteria, Serratia marcescens (Gram 음성 세균인 Serratia marcescens에 의한 카드뮴 흡착 기작)

  • 이호용;민봉희;최영길
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.39-43
    • /
    • 1999
  • Serratia marcescens, an enterobacterium of gram-negative bacteria, is characterized by resistance of the admium. Cadmium sensitive PM strain did not grow in the medium at cadmium concentration of 50 ppm. PA strain was induced to accommodate to cadmium by cultivating the mother strain (PC strain) in the medium with 50 ppm cadmium. As compared with PC and PM strains, PA strain revealed the excellent growth in cadmium media and accumulated four to five times higher cadmium concentration in cell than other strains. PA strain accumulated 23% of cadmium in cells when cultured in medium treated with 100 ppm cadmium and this cadmium was more accumulated in cytosol fractions than membrane fractions. Analysis by TEM indicated that cadmium was concentrated as a form of granule in cytosol. In protein patterns of cell after the treatment of cadmium, two inducible proteins (28 KDa and 64 KDa) and one reducible protein (45 KDa) were detected by SDS-PAGE. By Atomic Absorption Spectrophotometer, the amounts of cadmium attached to inducible proteins of 28 KDa and 64 KDa were 318.28 ㎍ and 325.37 ㎍ per gram of protein, respectively. It is assumed that these inducible proteins play an important role in the mechanism of cadmium accumulation in cells. A plasmid of 23Kbp was found in S. marcescens. The ability of resistance to cadmium in plasmid was confirmed by curing experiments.

  • PDF

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Polyhydroxyalkanoate (PHA) Production Using Waste Vegetable Oil by Pseudomonas sp. Strain DR2

  • Song, Jin-Hwan;Jeon, Che-Ok;Choi, Mun-Hwan;Yoon, Sung-Chul;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1408-1415
    • /
    • 2008
  • To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of $PHA_{MCL}$ from waste vegetable oil. The proportion of 3-hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao;Jiapei Ma;Jianfeng Xue;Zhiyong Liu;Yingqi Bai
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2023
  • Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

Population of Pesticide Resistant Strains in Cultivated Soils of Honam Area and Degradation of Chlorothalonil in soil (호남지역 농경지 토양에 분포된 농약내성균의 밀도와 살균제 Chlorothalonil의 분해)

  • Lee, Sang-Bok;Choi, Yoon-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.185-191
    • /
    • 2001
  • To obtain the basic information for degradation of remaining pesticide accumulated in cultivated soil of Honam area, the resistant bacterial strains were investigated in Chlorothalonil(TPN). Mancozeb, Bentazone, and Butachlor levels of 100, $500{\mu}g\;ml^{-1}$, and degradation of TPN by TPN-resistant bacteria in sterilized soil was studied under TPN levels 0, 10, 50 and $100{\mu}g\;g^{-1}$. A number of resistance strains were decreased with higher at concentration level of pesticide, and were higher in greenhouse than upland or paddy soil. The resistance of bacteria was strong in other of Bentazone> Butachlor> TPN> Mancozeb. The percentage of bacterial strains of resistance for pesticides isolated from the cultivated soil were the highest in Acinetobacter spp. and Corynebacterium spp., and the lowest in Moraxella spp. A number of TPN-resistant strains were the highest at the TPN level of $10{\mu}g\;g^{-1}$, and 5 days after strains inoculation, and were higher in Pseudomonas spp. TD-25 than TC-23 or strains in non-sterilized soil. The degradation of TPN was fast in order of strain TD-25>strain in non-sterilized soil >TC-23.

  • PDF

Red-Colored Phenomena of Ginseng(Panax ginseng C. A. Meyer) Root and Soil Environment (인삼근 적변현상과 근권 토양환경)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • In order to elucidate the mechanism of red-colored phenomena(RCP) in ginseng(Panax ginseng C.A. Meyer), distribution of inorganic elements of ginseng root and its surrounding soil, and microflora in the soil were investigated. Red brown colored-substances were accumulated in the cell wall of epidermis at early stage of red-colored ginseng (RCG). Cell wall of the late stage of RCG was disordered and microorganisms were shown in the disordered cell wall. Al, Si and Fe contents among inorpanic elements in the epidermis of RCG were higher at two or three times than that of healthy ginseng. On the other hand, K content was higher at three times in healthy ginseng than that of RCG. Especially, Fe content was higher at three times in lateral roots of RCG than that of healthy ginseng. Total 21 strains of microorganisms were isolated on the 523 medium from surface soil, surrounding soil of both healthy and RCG, and RCG. Six strains of microorganisms among them were resistant to 2 mM Fe. Two species in Bacillus app. and Lactobacillus app. , and one species in Micrococcus sp. and Npisseria sp. respectively were identified. It seemed that RCP was closely related with the distribution and uptake of inorganic elements, was also correlated Fe-independent metabolism of microorganisms.

  • PDF

Functional Characterization of Genes Located at the Aurofusarin Biosynthesis Gene Cluster in Gibberella zeae

  • Kim, Jung-Eun;Kim, Jin-Cheol;Jin, Jian-Ming;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.8-16
    • /
    • 2008
  • Aurofusarin is a polyketide pigment produced by some Fusarium species. The PKS12 and GIP1 genes, which encode a putative type I polyketide synthase (PKS) and a fungal laccase, respectively, are known to be required for aurofusarin biosynthesis in Gibberella zeae (anamorph: Fusarium graminearum). The ten additional genes, which are located within a 30 kb region of PKS12 and GIP1 and regulated by a putative transcription factor (GIP2), organize the aurofusarin biosynthetic cluster. To determine if they are essential for aurofusarin production in G. zeae, we have employed targeted gene deletion, complementation, and chemical analyses. GIP7, which encodes O-methyltransferase, is confirmed to be required for the conversion of norrubrofusarin to rubrofusarin, an intermediate of aurofusarin. GIP1-, GIP3-, and GIP8-deleted strains accumulated rubrofusarin, indicating those gene products are essential enzymes for the conversion of rubrofusarin to aurofusarin. Based on the phenotypic changes in the gene deletion strains examined, we propose a possible pathway for aurofusarin biosynthesis in G. zeae. Our results would provide important information for better understanding of naphthoquinone biosynthesis in other fdarnentous fungi as well as the aurofusarin biosynthesis in G. zeae.

Bacterial Multiplications and Electrophoretic Patterns of Soluble Proteins in Compatible and Incompatible Interactions of Pepper Leaves with Xanthomonas campestirs pv. vesicatoria (Xanthomonas campestris pv. vesicatoria에 감염된 고추잎의 친화적, 불친화적 반응에서 세균증식과 수용성 단백질의 전기영동 패턴)

  • 이연경;김영진;황병국
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 1994
  • Typically susceptible lesions were developed on pepper (cv. Hanbyul) leaves inoculated with the compatible strains Ds 1 of Xanthomonas campestris pv. vesicatoria. The lesions appeared first water-soaked and then turned yellow with a chlorotic area. In contrast, the leaves inoculated with the incompatible strain 81-23 initially turned yellow and then developed local necrosis. Multiplication of x. c. pv. vesicatoria in pepper leaves also were distinctly different between the two strains. The strain Ds 1 multiplied more greatly than did the strain 81-23 in the infected leaves. X. c. pv. vesicatoria infection of pepper leaves induced the synthesis of soluble proteins, especially more greatly in the compatible than in the incompatible interactions. Some pathogenesis-related (PR) proteins were detected in the intercellular washing fluid (IWF) and extracts of the infected pepper leaves. In particular, the 32 kDa protein on SDS-PAGE gels appeared intensely in the incompatible interaction. In contrast, some proteins with moluecular masses of 65, 71, and 75 kDa disappeared in the infected pepper leaves. Isoelectric focusing could identify the pIs of soluble proteins in infected pepper leaves. The accumulation of the IWF from infected leaves was more conspicuous in the incompatible than the compatible interaction. These results suggest that some extremely acidic and basic proteins were induced and accumulated in the intercellular spaces of infected pepper leaves.

  • PDF

A Study on the Prediction of Deformation of Welded Structures (용접구조물의 변형 예측에 관한 연구)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.64-73
    • /
    • 1997
  • Deformations of structures due to welding appear much complicated and deformated modes are also complex. As parameters governing deformations are various and effect of parameters on deformations is not well known, precise prediction of deformation due to welding has been a difficult problem. Until now, many research papers as to welding deformation have been published, but the research results can explain only one aspect of welding deformation have been published, but the research results can explain only one aspect of welding deformation and are hard to be used in reasonable prediction of welding deformations in complicated structures. In this study, based on the accumulated results concerning to welding deformations, a practical method to predict complicated welding deformations of large structure is proposed. A simplified model to estimate residual plastic strains is suggested and main parameters affecting residual plastic strains are shown to be heat input and joint restaints. Inherent strain theory and experimental data are combined with the finite element method and welding deformations of large structures are calculated by elastic analysis. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water

  • Dalia, A.M.;Loh, T.C.;Sazili, A.Q.;Jahromi, M.F.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.343-353
    • /
    • 2017
  • In the present study, the isolation of selenium (Se)-enriched bacteria from rumen fluid and hot spring water was carried out. Rumen fluid samples were taken from cannulated goats fed a basal diet and the water samples were collected from Selayang hot spring, Selangor-Malaysia. A total number of 140 Se-tolerant isolates were obtained aerobically using an Se-enriched medium and spread plate technique. All the isolates were initially screened for the ability to transform the Se-containing medium to a red-orange culture using a spectrophotometer. Twenty isolates of dark red-orange medium were selected for a screening of the highest Se-containing protein accumulating strains using the dialysis technique and icp.ms to measure the Se content. Four isolates, identified as Enterobacter cloacae (ADS1, ADS7, and ADS11), and Klebsiella pneumoniae (ADS2) from rumen fluid origin, as well as, one isolate from hot spring water (Stenotrophomonas maltophilia (ADS18)), were associated with the highest biomass organic Se-containing protein when grown in a medium enriched with $10{\mu}g/ml$ sodium selenite. In addition, around $50{\mu}g/100{\mu}g$ of the absorbed inorganic Se was accumulated as an organic form. Organic Se-containing protein in all the selected strains showed antioxidant properties in the range of 0.306 to 0.353 Trolox equivalent antioxidant capacity (TEAC) mg/ml. Therefore, these strains may offer a potential source of organic Se due to their Se-tolerant nature and higher biomass organic to inorganic Se ratio.