• Title/Summary/Keyword: accumulated error

Search Result 224, Processing Time 0.025 seconds

Estimation of Reservoir Inflow Using Frequency Analysis (빈도분석에 의한 저수지 유입량 산정)

  • Maeng, Seung-Jin;Hwang, Ju-Ha;Shi, Qiang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was carried out to select optimal probability distribution based on design accumulated monthly mean inflow from the viewpoint of drought by Gamma (GAM), Generalized extreme value (GEV), Generalized logistic (GLO), Generalized normal (GNO), Generalized pareto (GPA), Gumbel (GUM), Normal (NOR), Pearson type 3 (PT3), Wakeby (WAK) and Kappa (KAP) distributions for the observed accumulative monthly mean inflow of Chungjudam. L-moment ratio was calculated using observed accumulative monthly mean inflow. Parameters of 10 probability distributions were estimated by the method of L-moments with the observed accumulated monthly mean inflow. Design accumulated monthly mean inflows obtained by the method of L-moments using different methods for plotting positions formulas in the 10 probability distributions were compared by relative mean error (RME) and relative absolute error (RAE) respectively. It has shown that the design accumulative monthly mean inflow derived by the method of L-moments using Weibull plotting position formula in WAK and KAP distributions were much closer to those of the observed accumulative monthly mean inflow in comparison with those obtained by the method of L-moment with the different formulas for plotting positions in other distributions from the viewpoint of RME and RAE.

A Study on the Fast Method for Polygonal Approximation of Chain-Coded Plane Curves (이차원 곡선의 고속 다각형 근사화 방법에 관한 연구)

  • 조현철;박래홍;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 1988
  • For shape description, a fast sequential method for polygonal approximation of chaincoded plane curves which are object boundaries is proposed. The proposed method performs polygonal approximation by use of the distance error from one point to a line, and its performance is enhanced by the smoothed slopes of lines. Furthermore, accumulated distance error and variable distance error threshold are proposed in order to consider and implement the visual characteristics of the human being.

  • PDF

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

ON LEARNING OF CMAC FOR MANIPULATOR CONTROL

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.93-115
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller(CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d. o. f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process; A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Generalised Non Error-Accumulative Quantisation Algorithm with feedback loop

  • Koh, Kyoung-Chul;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1269-1274
    • /
    • 2004
  • This paper presents a new quantisation algorithm which has the closed-loop form and guarantees the boundness of accumulative error. This algorithm is particularly useful for mobile robot navigation that is usually implemented on embedded systems. If wheel commands of the mobile robot are given by velocity or positional increment at every control instant and quantised due to finite word length of controller's CPU, the quantisation error gets accumulated to causes large position error. Such an error accumulative characteristic is fatal for non wheeled mobile robots or autonomous vehicles with non-holonomic constraint. To solve this problem, we propose a non-error accumulative quantisation algorithm with closed-loop form. We also show it can be extend to a generalized form corresponding to the n-th order accumulation. The boundness of the accumulative quantisation error is investigated by a series of computer simulation. The proposed method is particularly effective to precise navigation control the autonomous mobile robots.

  • PDF

A Quantization Algorithm without Accumulative Error

  • Koh, Kyoung-Chul;Cho, Hyun-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.313-316
    • /
    • 1999
  • In this paper, a quantization algorithm by which the accumulative error can be prevented is presented. In digital control systems, the quantization cannot be avoided because of the finite word length of digital computers. The error due to quantization of the computed values may be tolerable in case of directly using them. In case of using the accumulated values, the error between sum of the original values and that of the quantized values becomes larger as the number of the values to be summed increases. Such an increasing accumulative error is critical for the control of precise NC machines, robots and autonomous vehicles. To solve this problem, a quantization algorithm without the accumulative error is presented. Basically, the algorithm is based on the feedback loop by which the accumulationive of the quantization error can be prevented. The error boundness of the proposed algorithm is proven and a computer simulation is performed to show the validity of the algorithm.

  • PDF

Odometry Error Correction with a Gyro Sensor for the Mobile Robot Localization (자이로 센서를 이용한 이동로봇 Odometry 오차 보정에 관한 연구)

  • Park Shi-Na;Hong Hyun-Ju;Choi Won-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.65-67
    • /
    • 2006
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

Modeling & Error Compensation of Walking Navigation System (보행항법장치의 모델링 및 오차 보정)

  • Cho, Seong-Yun;Park, Chan Gook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper, the system model for the compensation of the low-cost personal navigation system is derived and the error compensation method using GPS is also proposed. WNS(Walking Navigation System) is a kind of personal navigation system using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigation performance, computational methods have been investigated. The step is detected using the walking patterns, stride is determined by neural network and azimuth is calculated with gyro output. The neural network filters off unnecessary motions. However, the error compensation method is needed, because the error of navigation information increases with time. In this paper, the accumulated error due to the step detection error, stride error and gyro bias is compensated by the integrating with GPS. Loosely coupled Kalman filter is used for the integration of WNS and GPS. It is shown by simulation that the error is bounded even though GPS signal is blocked.

The Design and Evaluation of BACF/DCF for Mobile OIS Gyro Sensor's Zero Point angle Following (모바일 OIS(Optical Image Stabilization) 자이로 센서의 영점 각도 추종을 위한 BACF/DCF 설계 및 평가)

  • Lee, Seung-Kwon;Kong, Jin-Heung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.16-21
    • /
    • 2012
  • The gyro sensor that made by MEMS process is generated an accumulated error(drift) and escape the zero angle following during calculation of rotate angle. This study propose BACF(Boot Angle Compensation Filter) algorithm for prevent escape zero angle and DCF algorithm for remove accumulated error. DCF algorithm is designed for acquire accurate turn of ratio by remove offset and noise components. BACF algorithm is obtained average offset that removed noise components by recursively calculate. Experimental environment, two-axis gyro sensor and mobile OIS camera mounted control board and 5Hz oscillation of ${\pm}0.5^{\circ}$ for the experiments were carried out. BACF and DCF algorithm is applied and the resulting accumulated error did not occur and exactly zero angle following results were made.

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.