• Title/Summary/Keyword: accident warning and prediction

검색결과 4건 처리시간 0.015초

The Design of Remote Monitoring and Warning System for Dangerous Chemicals Based on CPS

  • Kan, Zhe;Wang, Xiaolei
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.632-644
    • /
    • 2019
  • The remote monitoring and warning system for dangerous chemicals is designed with the concept of the Cyber-Physical System (CPS) in this paper. The real-time perception, dynamic control, and information service of major hazards chemicals are realized in this CPS system. The CPS system architecture, the physical layer and the applacation layer, are designed in this paper. The terminal node is mainly composed of the field collectors which complete the data acquisition of sensors and video in the physical layers, and the use of application layer makes CPS system safer and more reliable to monitor the hazardous chemicals. The cloud application layer completes the risk identification and the prediction of the major hazard sources. The early intelligent warning of the major dangerous chemicals is realized and the security risk images are given in the cloud application layer. With the CPS technology, the remote network of hazardous chemicals has been completed, and a major hazard monitoring and accident warning online system is formed. Through the experiment of the terminal node, it can be proved that the terminal node can complete the mass data collection and classify. With this experiment it can be obtained the CPS system is safe and effective. In order to verify feasible, the multi-risk warning based on CPS is simulated, and results show that the system solves the problem of hazardous chemicals enterprises safety management.

국내 가스사고와 기상자료의 데이터마이닝을 이용한 가스사고 예측모델 연구 (Data Mining of Gas Accident and Meteorological Data in Korea for a Prediction Model of Gas Accidents)

  • 허영택;신동일;이수경
    • 한국가스학회지
    • /
    • 제16권1호
    • /
    • pp.33-38
    • /
    • 2012
  • 본 연구에서는 국내 가스사고의 발생 환경을 분석하여 가스사고의 재발을 방지하고자 가스 사고를 유형별로 분석하였다. 가스사고는 지속적으로 발생하고 있고, 사고의 내용에서도 시기별, 날씨 등에 따라 가스사용 형태가 변하고 있어서 가스의 사용환경과 가스사고는 밀접한 관계가 있는 것으로 나타났다. 가스사고를 평균기온, 최고기온, 최저기온, 상대습도, 운량, 강수량 및 풍속의 7가지 기상요소별로 분석해 본 결과, 기온과 상대습도 등에 따라 영향을 받고 있은 것으로 나타났으며, 맑은 날, 풍속은 낮을 때 가스사고 발생빈도가 많았다. 가스사고 예측을 위하여 제시된 모델식을 활용하여 기상청의 일기예보 시스템과 연계하여 가스사고 발생 가능성을 실시간으로 제공하고, 회사의 업무시스템과 연계시켜 실시간으로 확인이 가능하도록 하여 가스사고 예방활동에 적극 활용할 수 있을 것으로 사료된다.

시계열 분석을 이용한 가스사고 발생 예측 연구 (The Study of Prediction Model of Gas Accidents Using Time Series Analysis)

  • 이수경;허영택;신동일;송동우;김기성
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.8-16
    • /
    • 2014
  • 본 연구에서는 국내에서 발생한 가스사고를 분석하여 가스사고의 건수예측모델에 대하여 제시하였다. 가스사고 건수를 예측하기 위하여 단순이동평균법(3,4,5기간), 가중이동평균법 및 지수평활법을 적용해 본 결과, 4기간 이동평균법과 가중이동평균법에 의한 모델의 평균오차제곱합이 44.4와 43으로 가장 정확성이 높은 것으로 나타났다. 가스사고 발생건수 예측시스템을 개발함으로서 가스사고 예방활동에 적극 활용할 수 있을 것이다.

돌발홍수 예보를 위한 빅데이터 분석방법 (The big data method for flash flood warning)

  • 박다인;윤상후
    • 디지털융복합연구
    • /
    • 제15권11호
    • /
    • pp.245-250
    • /
    • 2017
  • 돌발홍수는 강우유출수가 하천으로 모여드는 유역이 좁은 지역에 집중호우로 인해 유입되는 물의 양이 급증하여 나타난다. 돌발홍수는 유속이 빠르고 홍수를 대비할 수 있는 시간이 부족하므로 인명과 재산상의 피해를 발생시킨다. 본 연구에서는 돌발홍수를 예보를 위한 빅데이터 분석방법을 수행하였다. 연구 자료는 2009년에서 2012년까지 국민안전처 국가재난정보센터에 보고된 38건의 홍수 피해 자료와 지표수문모형(TOPLATS)에 의해 생성된 수문기상정보인 강우량, 토양수분 상태, 지표유출량이다. 돌발홍수 발생 선행 6시간의 강우량, 토양수분 상태, 지표유출량 데이터를 요인분석을 통해 토양수분 상태, 장기요인에 의한 강우량과 지표유출량, 단기요인에 의한 강우량과 지표유출량으로 축소하였다. 빅데이터 분석 방법으로는 유형분석인 의사결정나무, 랜덤포레스트, 나이브베이즈, 서포트벡터머신, 로지스틱 회귀모형을 사용하였다. 돌발홍수 사고발생 자료가 38건으로 한정되어 있기 때문에 예측성능 정확도 판단이 중요하다. 예측성능 정확도 평가방법으로 kappa계수, TP Rate, FP Rate, F-Measure를 이용하였다. 이 외에 돌발홍수 발생 선행 시점별 재현성 평가와 과거 4년간 돌발홍수 경보 횟수를 통해 최적 유형분석 방법을 제시하였다. 연구결과 로지스틱회귀모형과 랜덤포레스트가 돌발홍수 예보를 위한 예측 성능이 가장 좋았다. 사고발생 자료가 2009년부터 2012년까지 38건으로 한정되어 있어 분석을 위한 훈련자료와 검증자료 구축에 한계가 있었다. 장기간의 자료가 수집된다면 더욱 정확한 빅데이터 분석을 수행할 수 있다.