• Title/Summary/Keyword: acceleration response spectra

Search Result 122, Processing Time 0.019 seconds

Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.63-71
    • /
    • 2006
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the nonlinear response spectra by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design spectra in the range of period from 0.02 to 10.0 seconds. The seismic response analysis is performed to examine the nonlinear response characteristics of SDOF system subjected to the simulated earthquake waves. It was concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

A Study on the Improvement of Co-Co Type Locomotive's Vertical Dynamic Performance (Co-Co형 기관차의 수직방향 동적성능 향상에 관한 연구)

  • Park, Ju-Hyuk;Choe, Yeong-Hyu;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.17-31
    • /
    • 1985
  • The Primary object of this study is to predict rigid carbody's vertical and pitch acceleration and/or displacement frequency response to vertical sinusoidal rail surface irregularities for any specified point of the carbody, and to verify the predictions by means of experiments. The developed computer program also calculates vertical and pith transmissibilities and acceleration spectra. This model can be used for first order analysis of ride behabior. it's main advantage is its simplicity and ease of use. This model can be used for first order analysis of ride quality behabior. It's main advantage is its simplicity and ease of use. The model was designed with 6 degreed of freedom. Equations of motion were derived by Lagrangian method. This calculation was applied to the vertical dynamic analysis in order to pursue a possible improvement of the dynamic performance of co-co locomotive, and results were very useful.

  • PDF

Masonry building behaviors during the February 6-12, 2017 Ayvacik-Çanakkale Earthquakes

  • Ural, Ali
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.355-363
    • /
    • 2019
  • Masonry structures in the rural areas of Turkey often damaged due to moderate and big earthquakes. After every earthquake many scientists made field investigations on the earthquake performance of these structures and gave many useful information on construction techniques. However, the newly constructed masonry buildings are still not suitable for the suggested techniques, and they are still in danger against future earthquakes. Five moderate earthquakes of moment magnitude Mw 5.3, 5.3, 5.2, 5.0, and 5.3 struck the Ayvacik-Çanakkale District of Turkey between 6 and 12 February, 2017. More than a thousand of aftershocks were occurred and most of the masonry buildings in the villages nearby main shock epicenter were affected. The author went to the earthquake field and investigated the earthquake performances of masonry structures. This paper presents the recorded acceleration data, acceleration response spectra, and the seismological aspects of these earthquakes. Besides, case studies of damaged stone masonry buildings, and failure mechanisms are discussed with illustrated photos which were taken during the field investigations. It is concluded that the damaged masonry buildings were not designed and constructed properly in accordance with the Turkish building codes or similar specifications.

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

Experimental Analysis on the Motion Response of a Container Ship in Irregular Head Waves (콘테이너선의 불규칙파 중 운동응답에 대한 실험적 고찰)

  • S.Y.,Hong;S.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • This paper presents the results of seakeeping tests in a container ship model in irregular head waves. A time domain signal generating procedure is devised so that the wave maker behaves in accordance with the specified wave spectrum. The surface elevation of generated waves is measured and analysed to render the recorded wave spectrum for comparison with the specified one. Correction is made to the time domain signal until the differences between the two spectra become negligible. The motion responses and vertical acceleration of the self-propelled ship model are measured and analysed by both the spectral and the double amplitude methods. The two methods give nearly same statistical values. Finally the recorded spectra are compared with those calculated from the frequency domain motion analysis to show the credibility of the experimental results.

  • PDF

Dynamic response of a fuel assembly for a KSNP design earthquake

  • Jhung, Myung Jo;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3353-3360
    • /
    • 2022
  • Using data from the design earthquake of the Korean standard nuclear power plant, seismic analyses of a fuel assembly are conducted in this study. The modal characteristics are used to develop an input deck for the seismic analysis. With a time history analysis, the responses of the fuel assembly in the event of an earthquake are obtained. In particular, the displacement, velocity, and acceleration responses at the center location of the fuel assembly are obtained in the time domain, with these outcomes then used for a detailed structural analysis of the fuel rods in the ensuing analyses. The response spectra are also generated to determine the response characteristics in the frequency domain. The structural integrity of the fuel assembly can be ensured through this type of time history analysis considering the input excitations of various earthquakes considered in the design.

Empirical ground motion model for Vrancea intermediate-depth seismic source

  • Vacareanu, Radu;Demetriu, Sorin;Lungu, Dan;Pavel, Florin;Arion, Cristian;Iancovici, Mihail;Aldea, Alexandru;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.141-161
    • /
    • 2014
  • This article presents a new generation of empirical ground motion models for the prediction of response spectral accelerations in soil conditions, specifically developed for the Vrancea intermediate-depth seismic source. The strong ground motion database from which the ground motion prediction model is derived consists of over 800 horizontal components of acceleration recorded from nine Vrancea intermediate-depth seismic events as well as from other seventeen intermediate-depth earthquakes produced in other seismically active regions in the world. Among the main features of the new ground motion model are the prediction of spectral ordinates values (besides the prediction of the peak ground acceleration), the extension of the magnitudes range applicability, the use of consistent metrics (epicentral distance) for this type of seismic source, the extension of the distance range applicability to 300 km, the partition of total standard deviation in intra- and inter-event standard deviations and the use of a national strong ground motion database more than two times larger than in the previous studies. The results suggest that this model is an improvement of the previous generation of ground motion prediction models and can be properly employed in the analysis of the seismic hazard of Romania.

Site effects and associated structural damage analysis in Kathmandu Valley, Nepal

  • Gautam, Dipendra;Forte, Giovanni;Rodrigues, Hugo
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1013-1032
    • /
    • 2016
  • Several historical earthquakes demonstrated that local amplification and soil nonlinearity are responsible for the uneven damage pattern of the structures and lifelines. On April $25^{th}$ 2015 the Mw7.8 Gorkha earthquake stroke Nepal and neighboring countries, and caused extensive damages throughout Kathmandu valley. In this paper, comparative studies between equivalent-linear and nonlinear seismic site response analyses in five affected strategic locations are performed in order to relate the soil behavior with the observed structural damage. The acceleration response spectra and soil amplification are compared in both approaches and found that the nonlinear analysis better represented the observed damage scenario. Higher values of peak ground acceleration (PGA) and higher spectral acceleration have characterized the intense damage in three study sites and the lower values have also shown agreement with less to insignificant damages in the other two sites. In equivalent linear analysis PGA varies between 0.29 to 0.47 g, meanwhile in case of nonlinear analysis it ranges from 0.17 to 0.46 g. It is verified from both analyses that the PGA map provided by the USGS for the southern part of Kathmandu valley is not properly representative, in contrary of the northern part. Similarly, the peak spectral amplification in case of equivalent linear analysis is estimated to be varying between 2.3 to 3.8, however in case of nonlinear analysis, the variation is observed in between 8.9 to 18.2. Both the equivalent linear and nonlinear analysis have depicted the soil fundamental period as 0.4 and 0.5 sec for the studied locations and subsequent analysis for seismic demands are correlated.