• 제목/요약/키워드: acceleration response spectra

검색결과 122건 처리시간 0.023초

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

고진등수 영역이 보강된 APR1400 설계지반응답스펙트럼의 개발 (Development of the DGRS enriched in the high frequency range for APR1400)

  • 장영선;김태영;주광호;김종학
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.67-74
    • /
    • 2001
  • This paper presents the Safe Shutdown Earthquake(SSE) input motion for the seismic design of the Advanced Power Reactor 1400(APR1400). The Design Ground Response Spectra(DGRS) far the SSE is based on the design spectrum specified in regulatory Guide(RG) 1.60 of U.S. Nuclear Regulatory Commission(US NRC), anchored to a Peak Ground Acceleration(PGA) of 0.3g and enriched in the high frequency range. This SSE seismic input motion is to be applied to the seismic analysis as the free-field seismic motion at the ground surface of both the rock and generic soil sites fur APRI1400. The enrichment for APR1400 seismic input motion is performed considering the current US NRC regulations, the seismic hazard studies performed by the Lawrence Livermore National Laboratory (LINL) and Electric Power Research Institute(EPRI) for the Central and Eastern United States nuclear power plant sites, and the seismic input motions used in the design certifications of the three existing U.S. advanced standard plants. It is represented by a set of DGRS and the accompanying Target Power Spectral Density(PSD) Function in both the horizontal and vertical directions.

  • PDF

Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking

  • Wang, Dayang;Zhuang, Chuli;Zhang, Yongshan
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.170-181
    • /
    • 2018
  • Because of the design and construction requirements, the nuclear structures need to maintain the structural integrity under both design state and extreme earthquake shaking. The base-isolation technology can significantly reduce the damages of structures under extreme earthquake events, and effectively protect the safeties of structures and internal equipment. This study proposes a base-isolation design for the AP1000 nuclear shield building on considering the performance requirements of the seismic isolation systems and devices of shield building. The seismic responses of isolated and nonisolated shield buildings subjected to design basis earthquake (DBE) shaking and beyond-design basis earthquake (BDBE) shaking are analyzed, and three different strategies for controlling the displacements subjected to BDBE shaking are performed. By comparing with nonisolated shield buildings, the floor acceleration spectra of isolated shield buildings, relative displacement, and base shear force are significantly reduced in high-frequency region. The results demonstrate that the base-isolation technology is an effective approach to maintain the structural integrity which subjected to both DBE and BDBE shaking. A displacement control design for isolation layers subjected to BDBE shaking, which adopts fluid dampers for controlling the horizontal displacement of isolation layer is developed. The effectiveness of this simple method is verified through numerical analysis.

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

Damages to Rubble Stone Masonry Structures during the January 24, 2020, Sivrice (Elazığ) Earthquake in Turkey

  • Ural, Ali;Firat, Fatih K.;Kara, Mehmet E.;Celik, Tulin;Tanriverdi, Sukran
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.231-243
    • /
    • 2022
  • The earthquake with a magnitude of Mw 6.8, which occurred on January 24, 2020, hit Sivrice (Elazığ) province of Turkey. The earthquake area takes place on the East Anatolian Fault Zone (EAFZ) located between the Arabian and Turkish plates, one of the most active seismic regions in Turkey. According to the Disaster and Emergency Management Presidency of Turkey (AFAD), 584 buildings collapsed, 6845 were heavily damaged, 1207 were moderately damaged, and 14389 were slightly damaged. The authors went to the region of earthquake after the mainshock to investigate the earthquake performances of masonry buildings. This paper presents the seismological aspects of the earthquake, acceleration records, and response spectra with different damping ratios. Furthermore, some typical damages and failure mechanisms on masonry buildings like rubble stone dwellings and minarets are discussed with illustrative photos. Although many major earthquakes have occurred in the region, similar mistakes are still being made in masonry building construction. In consequence, some suggestions viewpoint of the wooden tie beams, the corner details of masonry walls, the door and window openings, the metal fasteners and the earthquake codes are made to be more careful in masonry constructions at the end of the article.

국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안 (A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula)

  • 선창국;정충기;김동수
    • 한국지반공학회논문집
    • /
    • 제21권6호
    • /
    • pp.101-115
    • /
    • 2005
  • 국내 내륙의 지형 및 지질 특성을 대표하는 두 지역인 경주와 홍성을 대상으로 전단파 속도$(V_s)$ 획득 목적의 현장 탄성파 시험을 포함한 다양한 지반 조사를 실시하여 지반 특성을 평가하고, 이를 토대로 등가 선형 및 비선형 기법의 부지 응답 해석을 수행하였다. 현행 국내 내진 설계의 근간인 미국 서부 지역과의 지반 특성 비교 결왔 국내 내륙 지역의 기반암 심도는 매우 얕고 강성은 다소 컸다. 지반 분류 기준인 심도 30m까지의 평균 전단파 속도$V_s30$는 대상 지역 내에서 $250\sim650m/s$의 좁은 범위의 분포를 보였고, 그에 따라 대부분의 부지가 C와 D 지반 조건으로 분류되었다. 부지 응답 해석 결과로부터 현행 국내 내진 설계를 위한 단주기 증폭 계수$(F_ㅁ)$는 지반 운동을 과소평가하고 중장주기 증폭계수$(F_v)$는 과대평가하고 있음을 확인하였다. 이에 따라 국내 내륙 지역에 대한 지반 증폭 계수를 재산정하고, 지역적 지반 특성을 고려하여 기존 지반 분류 C 및 D의 세부 분류와 지표면 부근 심도까지의 평균 $V_s$$V_s20,\;V_s15,$$V_s10$의 추가 분류 기준이 적용된 합리적 지반 분류 체계를 제안하였다. 제안된 지반 분류 체계는 현재로서는 예비적인 방안이므로 향후 보완 및 개선이 필요할 것으로 판단된다.

연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능 (Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions)

  • 선창호;안성민;김정한;김익현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.137-144
    • /
    • 2019
  • 근단층 지역에 위치한 교량은 근단층지반운동에 대한 내진안전성을 확보하는 것이 중요하다. 본 연구에서는 연약지반이 두껍고 다양한 지층으로 구성된 지역에 건설되는 단일형 현장타설말뚝 교량의 지진거동특성과 내진안전성을 분석하였다. 근단층지반운동을 생성하고 지반해석을 수행하여 각 지층에서의 지반가속도이력을 산정하였다. 이 가속도이력을 이용하여 각 지층의 지반을 등가스프링으로 모델화하고, 각 지층에서의 가속도시간이력을 입력지반운동으로 하는 다지점 가진 지진해석을 수행하였다. 근단층지반운동의 특성으로 인하여 교량은 탄성영역 내에서 거동하였지만 최대모멘트의 발생 위치 등이 설계지반운동을 고려할 때와는 상이한 특성을 보였다.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

연약지반의 비선형성이 탄성 및 비탄성 지진응답스펙트럼에 미치는 영향 (Effect of the Nonlinearity of the Soft Soil on the Elastic and Inelastic Seismic Response Spectra)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제9권4호
    • /
    • pp.11-18
    • /
    • 2005
  • 비탄성 지진해석은 구조물-지반 체계의 비선형 거동 때문에 내진설계를 위해 필요하고, 합리적인 내진설계를 위해서 지반-구조물 상호작용을 고려한 성능에 기준한 설계의 중요성도 인식되고 있다. 이 연구에서는 11개 중약진과 5개 강진 기록을 최대 가속도 0.075g, 0.15g, 0.2g와 0.3g로 조정하여 연약지반에 세워진 단자유도계에 대한 탄성과 비탄성 지진응답해석을 지반의 비선형성을 고려하여 수행하였다. 의사3차원 동적해석 프로그램을 사용하여 주파수 영역에서 지진하중을 암반에 작용시켜 구조물-지반 체계에 대한 지진응답해석을 한번에 수행하였다. 연구결과에 의하면 비선형 지반-구조물 상호작용 영향을 고려하는 것과 설계기준에 따라 내진설계를 하는 것보다는 여러 가지 지반조건을 고려하여 성능에 기준한 내진설계를 수행하는 것이 필요하다. 또한 약진에 의한 연약지반의 비선형성이 비선형 지반에 의한 지진파의 증폭 때문에 탄성과 비탄성 지진응답에 심하게 영향을 미쳤는데 특히 탄성지진응답에서 두드러졌다.