• Title/Summary/Keyword: acceleration analysis

Search Result 2,602, Processing Time 0.032 seconds

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

A study on Analysis of Impact Deceleration Characteristics of Railway Freight Car (1차원 해석방법을 이용한 화차의 충돌가속도 분석)

  • Son, Seung Wan;Jung, Hyun Seung;Hwang, Jun Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • This study examined the problems of existing vehicles to propose alternatives to improve the crashworthiness of railway freight cars through collision acceleration analysis using a one-dimensional collision analysis method. A collision scenario of railway shunting and crash accidents was selected from the collision accident cases and international standards. A one-dimensional collision simulation using LS-DYNA was performed according to those scenarios. As a result, the acceleration level of the freight wagon was calculated to be under 2g and was predicted to meet the EN 12663 standard in the shunting situation. On the other hand, the result of crash simulation with an impact velocity between 10 and 15 km/h revealed the shock absorber capacity of the railway coupler to be insufficient in a crash situation, resulting in increased acceleration, and carbody deformation could be predicted. As a method of improving the crashworthiness, a deformation tube-type energy absorber was applied to the coupler system, and collision analysis was performed again with new energy absorption strategy. Overall, the simulation showed that the acceleration level was decreased by 12% of the conventional freight-car energy absorption system.

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.

A Study on Comparison and Analysis of Motion Sickness Inquiry with MSI Calculation for Training Ship Kaya (실습선 가야호의 멀미도 조사와 MSI 계산의 비교 분석에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Kim, In-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • In this paper, for better boarding performance and pleasant boarding sensitivity of the ship, comparison and analysis was performed of motion sickness questionnaire with MSI(Motion Sickness Incidence) calculation based on ship motion theory(Strip Method) due to sea condition, incident angle in main sail way, economic speed, and calculation position of the training ship Kaya of Pukyong National University. On theses works, the rougher sea conditions became, the higher total motion sickness rate was occurred. The weights of vertical acceleration and the rates of MSI were higher at the bridge and the accommodation, which were located farther from the center of gravity of the ship. And effects of the vertical acceleration of the ship were increased in rolling then in head sea. In comparison between motion sickness questionnaire with MSI calculation, when the vertical acceleration increased, the motion sickness rate increased. The location to increase vertical acceleration and the location to cause motion sickness were agreed.

An Analysis of Transmitted-Vibration Characteristics by Different Wrist Posture during Grinding Tasks (그라인딩 작업시 손목자세별 국소진동 전달특성 분석)

  • Hwang, Seong-Hwan;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study was performed to evaluate the characteristics of transmitted vibration to hand-arm system under different work posture while operating a light-weighted powered hand grinder. For the experiment, 8 different types of wrist posture (natural, unlar-flexion, radual-flexion, flexion, extension, complex posture, and etc.) and 3 types of feed force (20[N], 50[N], 70[N]) were considered. 10 male subjects were employed to polish metal plate with a hand grinder. All of them were normal and healthy with no history and symptom of the work related musculoskeletal disorders in the dominant hand. Vibration acceleration data were recorded with sampling rate, 2048[Hz]. In addition, unweighted overall R.M.S. acceleration at the tool and wrist, and transmissibility between them were used to evaluate factors from the recorded tri-axial vibration acceleration. The results indicate that transmissibility of natural wrist posture was significantly higher than others. In addition, as the feed force becomes larger, the vibration was transmitted in large quantities to hand-arm system through radius.

Measurement and Analysis about Behavior of Steel Plate Girder in Vicinity of Support, According to Driving Condition (주행조건에 따른 판형교 지점부 거동 측정 분석)

  • Lee, Syeung-Youl;Kim, Nam-Hong;Woo, Byoung-Koo;Na, Kang-Woon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.690-696
    • /
    • 2011
  • A number of conventional railway bridge is more than 2600. Non-ballast plate girder bridge is about 700 and this is 27% of all bridge numbers. Non-ballast plate girder has advantages that self load is more lighter than moving load and construction cost is more inexpensive than concrete bridge. But non-ballast plate girder has disadvantages that vibration and noise is bigger than concrete bridge. This study had analyzed behavior of non-ballast plate girder according to the arrangement of supports and driving conditions to review the proper arrangement of support. Measurements were performed in single line and disel locomotive of 7400type were used as test vehicle. The vehicle's driving conditions are as follows; Change of driving direction, Constant speed driving, Deceleration driving, Acceleration driving. Main measurement contents were horizontal displacement and vertical vibration acceleration in girder of vicinity support. Results of measurement are as follows; In case that a vehicle drives from fixed support to movable support, vertical vibration acceleration of the girder was smaller than opposition case.

  • PDF

An Application of Sampling to Determine a Proper Rate of Probe Vehicles for Macroscopic Traffic Flow Monitoring Indices (거시교통류 모니터링 지표산출을 위한 적정 프로브차량 비율 결정에 관한 연구)

  • Shim, Jung-Suk;Heo, Hyun-Moo;Eom, Ki-Jong;Lee, Chung-Won;Ahn, Su-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this paper, we consider three macroscopic traffic flow monitoring indices, Travel Time Index(TTI), Acceleration Noise(AN) and Two Fluid(TF) and investigate how to determine a proper rate of probe cars for producing reliable values of these indices. For the analysis, we use classical sampling theories and provide numbers of probe rates using simulation data.

Study on Sea Trial Analysis of Wave Piercing High Speed Planing Boat (파랑관통형 고속 활주선 실선 성능 분석에 관한 연구)

  • Jeong, Uh-Cheul;Lee, Chang-Woo;Han, Sang-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.335-339
    • /
    • 2017
  • This study investigated the sea trial performance of a wave piercing high speed planing hull (WPH). The bow shape of the boat is sharp, and it has no chine or spray strip like a normal planing boat. The skeg is attached to the bottom of the boat in the longitudinal direction from the bow to the stern. The speed performance was analyzed as the speed dropped in a wave, and the seakeeping performance was compared with that of a planing boat with a similar velocity coefficient by measuring the vertical acceleration of the bow in the wave. The turning circle was compared with Lewandowski's estimation for a planing boat. As a result of this study, it was confirmed that the velocity drop of the developed WPH was not large in a wave, and the vertical acceleration was greatly reduced compared with that of a normal planing boat. The turning circle was somewhat larger than the estimated results for a planing boat, but the overall tendency was the same.

Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석)

  • Kim Sung-Hun;Hong Yeh-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

Gait Feature Vectors for Post-stroke Prediction using Wearable Sensor

  • Hong, Seunghee;Kim, Damee;Park, Hongkyu;Seo, Young;Hussain, Iqram;Park, Se Jin
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • Stroke is a health problem experienced by many elderly people around the world. Stroke has a devastating effect on quality of life, causing death or disability. Hemiplegia is clearly an early sign of a stroke and can be detected through patterns of body balance and gait. The goal of this study was to determine various feature vectors of foot pressure and gait parameters of patients with stroke through the use of a wearable sensor and to compare the gait parameters with those of healthy elderly people. To monitor the participants at all times, we used a simple measuring device rather than a medical device. We measured gait data of 220 healthy people older than 65 years of age and of 63 elderly patients who had experienced stroke less than 6 months earlier. The center of pressure and the acceleration during standing and gait-related tasks were recorded by a wearable insole sensor worn by the participants. Both the average acceleration and the maximum acceleration were significantly higher in the healthy participants (p < .01) than in the patients with stroke. Thus gait parameters are helpful for determining whether they are patients with stroke or normal elderly people.