• Title/Summary/Keyword: acceleration analysis

Search Result 2,602, Processing Time 0.033 seconds

Study on Noise and Vibration in the Interior Permanent Magnet Motor (IPM 전동기의 진동소음에 대한 연구)

  • Lee, Sang-Ho;Kim, Ji-Min;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.853_854
    • /
    • 2009
  • This paper deals with the analysis of noise sources in interior permanent magnet (IPM) motor considering the natural frequencies of stator and electromagnetic forces. In order to analyze the noise generated from the vibration of stator, measured acceleration of stator is compared with calculated acceleration using electromagnetic forces and harmonic analysis.

  • PDF

Reliability Evaluation of Hydrostatic Bearing Ball Joint (정압 베어링 볼 조인트의 신뢰성 향상)

  • Jung, Dong-Soo;Park, Jong-Won
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.165-176
    • /
    • 2012
  • Hydrostatic bearing improves performance and life time of a product by avoiding solid friction and reducing viscosity friction with the help of creating pressure equilibrium between two faces doing relative motion. This study suggests failure analysis and test evaluation for a ball joint that adopts the hydrostatic bearing and introduces the entire process to improve reliability of the product by design improvement. A typical failure is growth of friction torque by solid friction, and its failure cause is determined and the improvement is proposed. Finally, reliability improvement is established by analysis of the results of before and after acceleration test.

Sensitivity analysis for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.309-323
    • /
    • 2006
  • In this paper, seismic response of a free-standing ship located in a dry dock and supported by an arrangement of n keel blocks due to base excitation is addressed. Formulation of the problem including derivation of governing equations in various modes of motion as well as transition conditions from one mode to another is given in Moghaddasi and Bargi (2006) by same authors. On the base of numerical solution for presented formulation, several numbers of analyses are conducted to study sensitivity of system's responses to some major contributing parameters. These parameters include friction coefficients between contacting surfaces, block dimensions, peak ground acceleration, and the magnitude of vertical ground acceleration. Finally, performance of a system with usual parameters normally encountered in design is investigated.

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

Comparative Study of Modal Combination Methods in Response Spectrum Analysis (응답스펙트럼해석을 위한 모우드 응답조합방법 비교연구)

  • 현창헌;최강룡;김문수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.19-25
    • /
    • 1992
  • The modal combination methods are studied for estimating the maximum structural responses in the seismic analysis by the response spectrum method. The most important problem in the modal combination is how to account for the correlation between the modal responses and to combine the high frequency modes (of which frequencies are greater than that at which the spectral acceleration approximately returns to the ZPA(zero period acceleration)). In this study, therefore, the widely known methods are investigated and compared among the numerous ones proposed up to now including those recommended in Regulatory Guide 1.92. The applicability of each method is investigated through example analyses also.

  • PDF

The optimum damper retrofit of cabinet structures by genetic (유전자알고리즘을 이용한 캐비닛 구조의 최적감쇠보강)

  • 이계희;최익창;하동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.379-386
    • /
    • 2004
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contained class 1 relays were studies in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed to the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by μ-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained in form of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The fitness function of the optimum procedure was constructed based on the ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness fur adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the damping exponents are proper.

  • PDF

A Development of Noise Detection System Utilizing the Vibrating Accelerative Sensor for the Reduction Gear Box (진동가속도센서를 이용한 Reduction Gear Box Noise 검출시스템 개발)

  • Cheon, Jong-Pil;Pyun, Young-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.274-279
    • /
    • 2009
  • Reduction Gear Box where from productive site uses the gear with power delivery with high mechanical efficiency of power a deceleration and as the mechanical element union product which has the velocity ratio which is various together is produced with the power occurrence motor and leads gets a high driving force is plentifully used. The above occurs from gear drive issue sound Whine, Noise and Vibration as occurring from the rim process which the gear will bite mainly is delivered with the case etc. gear drive whole which leads the axis and the bearing. The productivity falls with the going straight rate decrease which with like this problem point is caused by with rework the problem point where the cost of production rises under improving boil many kinds analyzed the plan and investigates the resultant acceleration sensor which and a frequency analysis system and was made to apply.

  • PDF

Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed (탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

A Study on Development of Train Stability Analysis Program and Measurement of Acceleration Vibration (차량의 가속도 진동계측 및 차량안정성 프로그램 개발에 대한 연구)

  • Kim, Sung-Yong;Park, Eun-Churn
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.527-532
    • /
    • 2010
  • In this study, vertical and horizontal accelerometers were installed at the both side of car body and tachometer was installed on the bogie, for the purpose of stability analysis of Korail Airport Express Train during driving. By applying the developed algorithm, the peak-to-peaks of horizontal and vertical acceleration which were matched with location by tachometer were found and compared with the threshold values. The threshold values per velocities which were presented in the "Metro Train Performance Criteria" were applied here. The validity of the developed algorithm was shown by comparing the site investigation and the measured values at frost heave locations.

  • PDF