• Title/Summary/Keyword: acceleration analysis

Search Result 2,602, Processing Time 0.026 seconds

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Affective Representation of Behavioral and Physiological Responses to Emotional Videos using Wearable Devices (웨어러블 기구를 이용한 영상 자극에 대한 행동 및 생리적 정서 표상)

  • Inik Kim;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2024
  • This study examined affective representation by analyzing physiological responses measured using wearable devices and affective ratings in response to emotional videos. To achieve this aim, a published dataset was reanalyzed using multidimensional scaling to demonstrate affective representation in two dimensions. Cross-participant classification was also conducted to identify the consistency of emotional responses across participants. The accuracy and misclassification in each emotional condition were described by exploring the confusion matrix derived from the classification analysis. Multidimensional scaling revealed that the represented objects, namely, emotional videos, were positioned along the rated valence and arousal vectors, supporting the core affect theory (Russell, 1980). Vector fittings of physiological responses also showed the associations between heart rate acceleration and low arousal, increased heart rate variability and negative and high arousal, and increased electrodermal activity and negative and low arousal. Using the data of behavioral and physiological responses across participants, the classification results revealed that emotional videos were more accurately classified than the chance level of classification. The confusion matrix showed that awe, enthusiasm, and liking, which were categorized as positive, low arousal emotions in this study, were less accurately classified than the other emotions and were misclassified for each other. Through multivariate analyses, this study confirms the core affect theory using physiological responses measured through wearable devices and affective ratings in response to emotional videos.

A Study on the Comparative Analysis of Seismic Waves and Blast Vibration Measurements by Distance from the Earthquake Epicenter (지진 진앙지에서 지진 진동의 거리별 실측치와 발파 진동과의 비교분석에 관한 연구)

  • Seunghoon Lee;Youngcheol Shin;Donghyun Kang;Daekyu Lim;Gimook Kim;Dongyeon Kim;Jinok Lee;Chunsik Lee
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.23-37
    • /
    • 2024
  • Recently, earthquakes occurring in Korea have frequently caused damage to buildings and structures. However, since it is impossible to predict when an earthquake will occur, it is challenging to determine the characteristics of the vibrations without pre-installed automated measuring devices. Fortunately, automated measuring devices have been installed at six blasting sites, allowing for the comparison of the characteristics of seismic and blasting vibrations. On June 12, 2024 (Wednesday) at 8:26 AM, a magnitude 4.8 earthquake occurred 4 km south-southwest of Buan-gun, Jeollabuk-do. This study compares the characteristics of seismic vibrations from this earthquake with the measured values of seismic and blasting vibrations at domestic blasting sites. Additionally, we examined the causes and scales of damage from the earthquake, and analyzed the characteristic values obtained from automated measuring devices installed in various regions from the epicenter to determine the degree of attenuation. This study aims to provide a basis for comparing the impact of vibrations from blasting on protected objects and to help preemptively address complaints that may arise from such vibrations in the future.

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data (상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석)

  • Tae-Ho Kwon;Byeong-Cheol Kim;Ki-Tae Park;Chi-Ho Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.62-68
    • /
    • 2024
  • The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

A Process-based Relative Sea-level Budget Along the Coast of Korean Peninsula Over 1993-2018 (1993-2018년 한반도 연안 상대해수면 수지 분석)

  • Hyeonsoo Cha;Seongbae Jo;Jae-Hong Moon
    • Ocean and Polar Research
    • /
    • v.46 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • Due to physical processes varying in space and time, regional sea-level rise (SLR) significantly deviates from the global mean. Thus, understanding and quantifying the contribution of each process to regional sea-level change is crucial to prevent low-lying inundation in preparation for future ocean conditions. In this study, we assessed to what degree sterodynamic (SD) effects (i.e., density-driven steric expansion and mass redistribution due to ocean circulation), contemporary mass redistribution (CMR), and glacial isostatic adjustment (GIA) contribute relative sea-level rise around the Korean coast from 1993 to 2018, with independent observations and reanalysis datasets. The assessment showed that the tide gauge-observed SLR trend can be explained by the sum of each component at 16 of 19 locations. The major contributors to relative SLR are SD effects of 2.03±0.27 mm/yr and CMR components of 1.31±0.05 mm/yr, while GIA drives sea-level decreasing of -0.27±0.15 mm/yr on the Korean coast. It was also found that the spatial deviations of SLR are primarily caused by the SD effects. In addition, the evaluation of vertical land motion (VLM) based on altimetry and tide gauge indicates that most tide gauge locations have experienced uplift during at least altimetry period, whereas Wido station has experienced particularly high rate of subsidence that contributed to the SLR acceleration. Further examination of the impact of earth deformation due to CMR, GIA, and local process on the VLM trends demonstrated that the GIA and CMR contribute to land uplift with the average of 0.35±0.15 mm/yr and 0.17±0.05 mm/yr, respectively. On the other hand, the local processes like groundwater depletion and sediment compaction showed a wide range of variability, from -1.61 to 0.58 mm/yr, indicating a significant contribution to regional differences in vertical land motion.

Identifying Roadway Sections Influenced by Speed Humps Using Survival Analysis (생존분석을 활용한 과속방지턱 영향구간 분석)

  • YOON, Gyugeun;JANG, Youlim;KHO, Seung-Young;LEE, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.261-277
    • /
    • 2017
  • This study defines influencing sections as the part of the road section where passing vehicles are traveling with the lower speed compared to speed limit due to speed humps. The influencing section was divided into 3 parts; influencing section before the speed hump, interval section, and influencing section after the speed hump. This analysis focused on the changes of each part depending on installation types, vehicle types, and daytime or nighttime. For the interval section, especially, the ratio of distance traveled with lower speed than speed limit to interval section is defined as effective influencing section ratio to be analyzed. Vehicle speed profiles were collected with a speed gun to extract influencing section lengths. The survival analysis was applied and estimated survival functions are compared with each other by several statistical tests. As a consequence, the average length of influencing section on the 50m sequential speed humps was 75.3% longer during the deceleration than that of isolated speed hump, and 18.9% during the acceleration. The effective influencing section ratio for the 30m and 50m sequential speed humps had a small difference of 81.0% and 76.0% while the absolute values of the section that passing speed were less than the speed limit were longer on 50m sequential speed humps, each being 24.3m and 38.0m. Using the log rank test, it was evident that sequential speed humps were more effective to increase the length of influencing sections compared to the isolated speed hump. Vehicle type was the strong factor for influencing section length on the isolated speed hump, but daytime or nighttime was not the effective one. This research result can be used for improving the efficiency selecting the installation point of speed humps for road safety and estimating the standard of the distance between sequential speed humps.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

A Study on Balanced -type Oseillating Mole-Drainer(III)-Model Test for Draft Force, Torque, Power and Moment (평행식 진동탄환 암거 천공기의 연구(III)-견인력, 토크, 동력 및 모멘크에 관한 모형시험-)

  • 김용환
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This paper is the third one of the study on balanced type oscillating mole-drainer, the first one was presented in No 9. Gyeongsang College Report and the second one in Vol. 17, No.4 of the KSAE. In the first part of this study, the characteristics of traction forces between the nonoscillating earth working equipments and oscillating ones was compared. A model of the balanced type oscillating mole-drainer, which composed of a mechanism that may reduce the machine vibration, was designed following the dimensional analysis and similitude technique. The model test was carried out to clarify the balancing mechanism of the oscillating parts and other parts of the machine. In the light of the results from the model tests, a prototype machine was made for experimental purpose. Results from the field test by a reported in the near future. In the second report, the model tests were carried out under the same soil conditions, i.e, . oscillating frequency, running velocity, and oscillating amplitude, etc. It was clear that use of balanced type oscillating model could substantially reduce the vibration of the whole system of the machine, when compared with the nonoscillating type model. In this paper(the third report), results of investigation on the traction force, power requirement, and moment. etc, is presented. Analysis of variance technique was used for analyzing the effect of the frequency, amplitude, and running velocity on the draft force, torque, power requirements, and moments. The results obtained from the model tests are as follows, 1) By practicing a balanced-type oscillating mole-drainer, it was possible to reduce the traction resistance by 55.1-61. 2 percent of traction resistance, however, was 1.75 - 1.95 times greater than the value of resistance which was induced by use of a mole-drainer with single bullet. The resistance of rear shank against soil was considered as a main causing factor of the above results. 2) As the oscillation frequency was increased, the traction resistance was decreased. Considering on the effect of oscillation the greater the amplitude, and the slower the running velocity was, the greater the reduction ratio of traction resistance was. 3) The ratio of the traction resistance of oscillating mole-drainer to that of non-oscillating one could be represented as a function of dimensionless variable (V/$Af$). The results from the tests were well agreed with the reported results from the experim ents on oscillation plow or hoe. 4) By taking a lower value of (V/$Af$), reducing the traction resistance was possible. This fact meant, however, that the efficiency of mole drain practice would be lower. 5) It was experimentally confirmed under the same condition of soil that the variable (R/$rD1^3$) could be represented as a function of a variable($V^2/gD$) when a non\ulcornerocillating mole-drainer was used. 6) When a oscillating mole-drainer was used, the variable(R/$rD_1^{3}$) could be represented as a function of two variables ($v^2/gD_1$) and (V^2/gD_1$). 7) The torque was not affected by a change of frequency. However, a relation of proportionality existed between torque and amplitude, running velocity, and ratio of bullet diameter. When a balanced type oscillating mole-drainer with two bullets was used, torque was increased by 52.8-78. 4 percent and total power requirement was also increased. 8) Total power requirement was increased linearly in accordance with the increasing frequency, 41.96 percent of total power was used for oscillating action. The magnitude of total power requirement was 1. 8-9. 4 times greater than that of a non-oscillating mechanism. In the view point of power requirement, it was not advisable to increase the frequency, amplitude, running velocity, and ratio of bullet diameter at the same time. 9) Only the positive moment occured in the rear shank. Change of the diameter of a rear bullet, could not affect the balancing against the soil resistance. It was necessary for rear bullet to have a large resistance against soil only when the rear bullet was in backward motion. 10) Within an extent of the experimental base, optimum limits for several design factors were A=0.5cm, $f$=22.5Hz, V=O. 05m/sec, and $\lambda$=1.0 By adapting these values traction resistance was reduced by 40 percent and vibration acceleration wa s reduced by 60 percent. Even though the total , power requirements for operating a balanced type oscillation mechanism was greater ~than that of non-oscillating one, using a oscillating mechanism would be more effective. Because a balanced type oscillating mechanism is used, tractive resistance will be reduced and then the lighter . tractive equipment could be used.

  • PDF