• Title/Summary/Keyword: accelerated solvent extraction

Search Result 20, Processing Time 0.024 seconds

Use of Accelerated Solvent Extraction Method for Determination of Residual Pesticides in Agricultural Products (농산물의 잔류농약분석을 위한 가속용매추출 (Accelerated Solvent Extraction) 방법의 이용)

  • Lee, Sung-Woo;Seo, Hye-Young;Han, Byung-Jae;Jeong, Yang-Mo;Kim, Jun-Hyoung;No, Ki-Mi;Kim, Kyong-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.228-237
    • /
    • 2004
  • ASE (accelerated solvent extraction) was used to develop an analytical method for reducing the sample preparation time in pesticide residues analyses of agricultural produce. The conditions of ASE were as follows: preheat 1 min, heat 5 min, static 1 min, solvent flush% 60 vol., nitrogen purge 60 sec, 4 cycles, 1,500 psi pressure, and $100^{\circ}C$ temperature. When n-hexane:acetone (4 : l, v/v) was used as, an extraction solvent, the extraction and purification efficiency of ASE did not show the considerable difference compared with solvent extraction, and the reduction of extraction solvent did not affect the performance of extraction. It was proved that ASE method can reduce, sample preparation time as the extraction and purification steps were combined, and the extraction solvent was significantly reduced.

Analytical Method for Dioxin and Organo-Chlorinated Compounds: (Ⅱ) Comparison and Extraction Methods of Dioxins from XAD-2 Adsorbent

  • 양정수;이성광;박영훈;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.689-695
    • /
    • 1999
  • Supercritical fluid extraction (SFE), ultrasonic extraction (USE), and accelerated solvent extraction (ASE) were compared with the well known Soxhlet extraction for the extraction of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins(PCDDs) from the XAD-2 resin which was used to adsorb PCDDs in the atmosphere. XAD-2 resin spiked with five PCDDs was chosen as a sample. The optimum conditions for the extraction of PCDDs by SFE were turned out to be the use of CO2 modified with 10% toluene at 100 ℃ and 350 atm, with 5 min static extraction followed by 20 min dynamic extraction. SFE gave a good extraction rate with good reproducibility for PCDDs ranging from 68 to 98%. The ultrasonic extraction of PCDDs from XAD-2 was investigated and compared with other extractions. A probe type method was compared with a bath type. Two extraction solvents, toluene and acetone were compared with their mixture. The use of their mixture in probe type, with 9 minutes of extraction time, was found to be the optimum condition. The average recovery of the five PCDDs for USE was 82-93%. Accelerated solvent extraction (ASE) with a liquid solvent, a new technique for sample preparation, was performed under elevated temperatures and pressures. The effect of tem-perature on the efficiency of ASE was investigated. The extraction time for a 10 g sample was less than 15 min, when the organic solvent was n-hexaneacetone mixture (1 : 1, v/v). Using ASE, the average recoveries of five PCDDs ranged from 90 to 103%. SFE, USE, and ASE were faster and less laborious than Soxhlet extraction. The former three methods required less solvent than Soxhlet extraction. SFE required no concentration of the solvent extracts. SFE and ASE failed to perform simultaneous parallel extractions because of instrumental limitations.

Pretreatment Method Development of PCDD/Fs in Sediment Using ASE and SPMDs (ASE와 SPMDs를 이용한 퇴적물중 PCDD/Fs의 전처리법 개발)

  • Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.1 s.56
    • /
    • pp.49-55
    • /
    • 2007
  • Three kind of ASE (Accelerated Solvent Extraction) and SPMDs (Semi-Permeable Membrane Devices) combined methods (ASE-SPMDs, ASE-accelerated SPMDs and SPMDs without extraction) and general Soxhlet-GPC were compared each other for the analysis of PCDD/FS in sediment. The average recovery rate of three types ASE and SPMDs combined methods (108.1%) were higher than that of the Soxhlet-GPC (79.5%) for three samples in each method using surrogate internal standards. The average coefficient of variation (10%, $2.1{\sim}25.2%$) for each congener of PCDD/Fs shows the reasonable results. Total PCDD/Fs concentrations after SPMDs without extraction were quite low, but those after ASE-SPMDs and ASE-accelerated SPMDs methods were close to the Soxhlet-GPC. Thus, the ASE-SPMDs and ASE-accelerated SPMDs methods are considered as the excellent pre-treatments method because they need less solvent and time without quality degradation.

A Comparative Study on the Analytical Methods of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향조탄화수소류의 분석 방법간 비교연구)

  • 박찬구;김민영;정동균;모세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.595-606
    • /
    • 2000
  • In order to compare analytical conditions for measuring PAHs(polycyclic aromatic hydrocarbons) in ambient air, a series of experiment were conducted using three different types of extraction methods that include:(1) accelerated solvent extraction (ASE), (2) soxhlet, and (3) sonification methods. Efficiency and relevant analytixal parameters for each of these methods were examined on five different types of solvents that include:(1) 10% diethyl ether in n-hexane(v/v), (2) dichloromethane, (3)cyclohexane.(4) toluene, and (5) Benzene: ethanol (4:1). Comparison of extraction efficiency for various combinations between methods and solvents was made through an application of both internal and external standard calibration techniques. The extraction efficiency tests, when checked using both internal and external standards, allowed us to derive meaningful comparison among different techniques and among solvents.

  • PDF

Optimization and Bioassay Guided Comparative Techniques for Efficient Extraction of Lutein Esters from Tagetes erecta (Var. Pusa Narangi Genda) Flowers

  • Kawar Lal Dabodhia;Brijesh Tripathi;Narendra Pal Lamba;Manmohan Singh Chauhan;Rohit Bhatia;Vivek Mishra
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.40-48
    • /
    • 2024
  • Capacity of the analytical/quantitative evaluation techniques to satisfy both qualitative and quantitative considerations for effective extraction of marigold oleoresins/xanthophylls and their potential as anti-mycotic and antioxidant activity was assessed. Accelerated solvent extraction (ASE), Soxhlet extraction (SE), Supercritical fluid extraction (SCFE), Cold extraction (CE), and ultrasonically assisted extraction (USE) techniques were evaluated for extraction of oleoresin/xanthophyll content from Tagetes erecta (Var. Pusa Narangi Genda) with respect to solvent consumption, extraction time, reproducibility, and yield. Followed by the antifungal and antioxidant activity evaluation. The overall yield of Tagetes oleoresin was higher in ASE (64.5 g/kg) followed by SE (57.3 g/kg), USE (50.7 g/kg), SCFE (45.3 g/kg) and CE (31.6 g/kg). The lutein esters represented more than 80% of the constituents. Further, xanthophyll/ lutein content in oleoresin was found to be quite higher in HPLC (r2 = 0.996) analysis than in the AOAC recommended UV spectrophotometer analysis. The oleoresin exhibited moderate antioxidant activity (DPPH assay) and antifungal activity against three phytopathogenic fungi. Based on the various parameters, the reproducibility of ASE was better (0.3-8.0%) than that of SE (0.5-12.9%), SCFE (0.2-9.4%), USE (0.3-12.4%) and CE (0.8-15.3%). ASE with (RSD 1.6%) is preferred being faster, reproducible, uses less solvent, robust and automation allows sequential extraction of the sample in less time.

Pesticide Multiresidues Analysis of Environmental-friendly Agricultural Soils by the Complex Cleanup Method of Accelerated Solvent Extraction (ASE) and Solid Phase Extraction (SPE) (ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석)

  • Moo, Kyung-Mi;Park, Jin-Woo;Lee, Young-Guen;Choi, Young-Whan
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.73-80
    • /
    • 2011
  • Fifty substances of pesticide were selected for analysis through the historical investigation of pesticides detected from environmental-friendly agricultural soil, and the environmental-friendly agricultural soils in Gyeongnam area were collected and then were accepted Anve (accelerated solvent extraction) and SPve (solid-phase extraction) as multiresidue extraction and clean up methods suitable to the soils. The pesticide residues were analyzed by using GC/vCD/NPD, HPLC/UV/FL, GC/MSD, or HPLC/MSD. 50 kinds of pesticides for the soils were an average of 95.5% from retrieval ratio of the 72 to 118% range, and the average of 3.0% for CV (%). Among 40 samples of soil, 20 components were detected from pesticide residues of 21 samples, and average amounts detected for these components were 0.035 for endosulfan, 0.043 for ethoprophos, 0.020 for chlorpyrifos, 0.023 for chlorfenapyr, 0.047 for flufenoxuron, 0.070 for fenvalerate, 0.266 for cypermethrin, 0.016 for lufenuron, 0.022 for bifenthrin, 0.025 for fenobucarb/BPMC, 0.043 for difenoconazole, 0.059 for fenarimol, 0.020 for kresoxim-methyl, 0.026 for tetraconazole, 0.039 for isoprothiolane, 0.017 for iprobenfos, 0.014 for nolrimol, 0.156 for fluquinconazole, 0.047 for tebuconazole, and 0.045 mg/kg for oxadiazon. Therefore it is infered that the establishment of pesticide residues limit for environmental-friendly agricultural soil is needed as soon as possible.

Optimization of Extraction of Marker Compounds from Red Ginsengs by Accelerated Solvent Extraction Using Response Surface Methodology (반응표면분석법을 사용한 가속 용매 추출에 의한 홍삼 지표성분의 추출 최적화)

  • Kim, Eun Ok;Xu, Jiu Liang;Um, Byung Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1162-1169
    • /
    • 2016
  • A new method based on accelerated solvent extraction (ASE) combined with response surface methodology (RSM) has been developed for optimization of the extraction of ginsenoside [Rb1, Rg1, and Rg3(20S)], total phenolics, and benzopyrene in red ginseng. The RSM method, based on a five level and two variable central composite design, was employed to obtain the optimal combination of extraction conditions. In brief, ginsenosides Rb1, Rg1, and Rg3(20S) and total phenolics with undetectable benzopyrene were optimally extracted with 50% ethanol as an extraction solvent, extraction temperature of $158^{\circ}C$, extraction time of 20 min, extraction pressure of 2,500 psi, flush volume of 60%, and one extraction cycle. The contents of ginsenosides and total phenolics in red ginseng extracted by ASE under optimum conditions were significantly higher than those extracted by sonication and reflux extraction.

Extraction of Hemicellulosic Sugar and Acetic Acid from Different Wood Species with Pressurized Dilute Acid Pretreatment

  • Um, Byung-Hwan;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.172-182
    • /
    • 2014
  • Extraction is a necessary element in the bioconversion of lignocellulosics to fuels and chemicals. Although various forms of chemical pretreatment of cellulosic materials have been proposed, their effectiveness varies depending on the treatment conditions and substrate. In this study, mixed hardwood (MH) and loblolly pine (LP) were pretreated with dilute acid in a 100 mL accelerated solvent extraction (ASE) at the predetermined optimal conditions: temperature: $170^{\circ}C$, acid concentration: 0.5% (w/v), and reaction time: 2~64 min. This method was highly effective for extracting the hemicellulose fraction. Total xmg (defined as the sum of xylose, mannose, and galactose) can be extracted from milled MH and LP through pressurized dilute acid treatment in maximum yields of 12.6 g/L and 15.3 g/L, respectively, representing 60.5% and 70.4% of the maximum possible yields, respectively. The crystallinity index increased upon pretreatment, reflecting the removal of the amorphous portion of biomass. The crystalline structure of the cellulose in the biomass, however, was not changed by the ASE extraction process.

Quantitative Extraction Analysis of Brominated Flame Retardant Substances Using Supercritical-Fluid Method for Environmental Assessment (초임계추출법을 이용한 브롬계 난연제 화합물 환경성 평가 추출효율 분석 연구)

  • Oh, Min-Kyung;Yoon, Sang-Hwa;Lee, Young-Kwan;Han, Jae-Sung;Won, Sung-Ho;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • For the evaluation of brominated flame retardants included in polymeric electronic devices, we investigated the extraction methods and solvent systems for four different types of polymers of PC (polycarbonate), PP (polyropylene), PET (poly(ethylene terephthalate)) and PBT (poly(butylene terephthalate)) using different solvent systems of hexane/acetone, THF, toluene, and THF/toluene. In order to compare the extraction efficiency of different methods and solvent systems, the deca-BDE (decabromo diphenyl ether) flame retardant was included in PC, PP, PET and PBT systems and subsequently extracted by soxhlet, ultrasonic, accelerated solvent, microwave and supercritical fluid extraction methods. The amount of the extracted flame retardant was monitored to evaluate the extraction efficiency. The ultrasonic extraction method was found not to be acceptable as an extraction method for the polymer systems mainly due to a low salvation efficiency of the organic solvents. Soxhlet, accelerated solvent and microwave extraction methods exhibited over 80% of extraction efficiency for toluene. The supercritical fluid extraction method, which has been used as an extraction method for flame retardants in polymers, showed the extraction efficiencies of ca. 100% for PC and PP in the optimal extraction conditions of $60^{\circ}C$ and 120 bar.

Analysis of Propylen Chlorohydrin in Hydroxypropyl Distarch Phosphate by Accelerated Solvent Extractor (ASE) (가속화용매추출기를 이용한 히드록시프로필인산이전분의 프로필렌클로로히드린 분석방법에 관한 연구)

  • Lee, Myung-Ja;Sin, Yeong-Min;Jeong, Eui-Han;Choi, Tae-Jin;Chung, Sook-Hyun;An, Won-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.604-608
    • /
    • 2002
  • Accelerated solvent extraction (ASE) was used for a rapid and simple extraction of propylenchlorohydrin (PCH) residue in hydroxylpropyl modified starch. The effects of temperature, pressure and extraction solvent on the extraction efficiency were investigated to find the optimal condition of ASE. The optimal conditions for PCH extraction in hydroxylpropyl modified starch were static time of 50 min, purge time of 300 sec, heating time of 5min, temperature of 12$0^{\circ}C$, pressure of 2500 psi, flush (%) with 100 volumes, and ethylacetate as an extraction solvent. The recovery (96.1%) of this method was higher than that (76.4%) of Code of Food Additive. Therefore, the ASE was a good method in both aspects of efficiency and effectiveness.