• Title/Summary/Keyword: ac-dc converters

Search Result 265, Processing Time 0.024 seconds

Reference DC/AC Power comparator on the basis of precision thermal converters (정밀 열전형변환기를 사용한 기준직교류전력비교기)

  • Park, Young-Tae;Jang, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.676-678
    • /
    • 1995
  • The Paper describes a dc/nc power comparator for measurement of power. Based on a thermal principle, the instrument performs ac-dc transfer and absolute power and energy measurements in the range of currents from 0 to 5 A, voltages from 60 to 240 V, power factors from 0 to 1 and frequencies from 50 to 1000 Hz. The ac-dc transfer accuracy is better than 20 ppm at unity power factor and better than 50 ppm at 0.5 power factor.

  • PDF

Design of Multilevel Variable Output Voltage AC-DC Converter for Power Amplifier of Underwater Acoustic Sensor (수중 음향센서용 전력증폭기를 위한 멀티레벨 가변전압출력 AC-DC 전원회로 설계)

  • Lee, Chang-Yeol;Kim, In-Dong;Nho, Eui-Cheol;Moon, Won-Kyu;Kim, Won-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.72-83
    • /
    • 2013
  • The paper proposes a new multilevel variable output voltage AC/DC Converter for power supply of power amplifiers used in underwater acoustic sensors. The proposed multilevel variable output voltage AC/DC Converter is composed of two parts. One as the input section is the high efficiency phase-shifted PWM full bridge DC-DC converter to get multiport power sources. The other as the output section is composed of two flying-capacitor 3-level DC-DC converters and a diode bridge circuit to get fast-response and multilevel variable output voltage for an envelope amplifier. Also the paper suggests the detailed circuit topology and design guideline of multilevel variable output voltage AC/DC converter. It also proposes the power balanced control method between 3-level converters and the voltage balanced algorithm for flying capacitors. Its characteristics should be verified by the detailed simulation results. It is anticipated that the proposed converter will be used very well for power amplifiers used in underwater acoustic sensors.

Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection (입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정)

  • 이강주;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a novel on-line dc capacitance estimation method for the three-phase PWM converter is proposed. At no load, input current at a low frequency is injected, which causes dc voltage ripple. With the at voltage and current ripple components of the dc side, the capacitance can be calculated. Experimental result shows that the estimation error is less than 2%.

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

Applications of A New Current Control witching Strategy for The Bridge Type PWM Converters (브리지형 PWM 변환기 전류제어를 위한 새로운 스위칭 방법의 응용)

  • Kwon, Byong-Heon;Oh, Won-Seok;Cho, Kyu-Min;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1182-1186
    • /
    • 2000
  • In many applications of the bridge type PWM converters as like inverters. AC/DC PWM converters or active power filters, it is necessary to control the input/output current. This paper presents a new current control switching strategy for the bridge type PWM converters. And variable speed motor control applications fed by current controlled inverter, PWM AC/DC converter applications. active power filter applications and class-D amplifier applications using the proposed new current control switching method are shown.

  • PDF

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

A Study on Control Methods and Harmonic Analysis of AC/DC GTO Converters (AC/DC/GTO 컨버터의 제어방식 및 고조파 분석에 관한 연구)

  • Kim, Yoon-Ho;Song, Chi-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1093-1102
    • /
    • 1994
  • PWM converters employing GTO's are proposed to be used for the currently planned Korean High-Speed Train system. In this paper, operating methods and harmonic spectrums are investigated for the PWM modulated voltage controlled GTO AC/DC converter used in the High-Speed Train System. It is shown that harmonic components can be controlled by varying carrier frequency in PWM modulation schemes. Then the input power-factor control scheme is suggested and analyzed. It is found that the power-factor can be varied by controlling the converter input voltage and phase angles between the input supply voltage and the converter input voltage. Finally, simulation programs are developed and converter systems are implemented.

Design and Implementation of a Power Conversion Module for Solid State Transformers using SiC MOSFET Devices (배전용 반도체 변압기 구현을 위한 SiC MOSFET 기반 전력변환회로 단위모듈 설계에 관한 연구)

  • Lim, Jeong-Woo;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2017
  • This paper describes the design and implementation of a unit module for a 10 kVA class 13.2 kV/220 V unidirectional solid-state transformer (SST) with silicon-carbide metal-oxide-semiconductor field-effect transistors. The proposed module consists of an active-front-end (AFE) converter to interface 1320 V AC voltage source to 2500 V DC link and an isolated resonant DC-DC converter for 500 V low-voltage DC output. The design approaches of the AFE and the isolated resonant DC-DC converters are addressed. The control structures of the converters are described as well. The experiments for the converters are performed, and results verify that the proposed unit module can be successfully adopted for the entire SST operation.

Multi-Channel AD Converters with High-Resolution and Low-Speed (고정밀 저속 다중채널 아날로그-디지털 변환기)

  • Bae, Sung-Hwan;Lee, Chang-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • Analog-to-Digital converters (ADCs) used in instrumentation and measurements often require high absolute accuracy, including excellent linearity and negligible dc offset. Incremental converters provide a solution for such measurement applications, as they retain most of the advantages of conventional ${\Delta}{\Sigma}$ converters, and yet they are capable of offset-free and accurate conversion. Most of the previous research on incremental converters was for single-channel and dc signal applications, where they can perform extremely accurate data conversion with more than 20-bit resolution. In this paper, a design technique for implementing multiplexed incremental data converters to convert narrow bandwidth ac signals is discussed. A design methodology to optimize the signal-to-quantization+thermal noise ratio of multiplexed IDC is presented. It incorporates the operation principle, topology, and digital decimation filter design. The theoretical results are verified by simulation results.

  • PDF

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng;Lyu, Jing;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1683-1696
    • /
    • 2018
  • Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.