• Title/Summary/Keyword: ac-dc converters

Search Result 265, Processing Time 0.023 seconds

A Novel Diagnosis and Compensation Scheme for AC-DC Converters under Switching Fault Status (AC-DC 컨버터의 고장 시 진단 및 보상기법)

  • Lee Byoung-Kuk;Baek Ju-Won;Yoo Dong-Wook;Rim Gun-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.533-536
    • /
    • 2004
  • In this paper, a novel compensation scheme for ac-dc pwm converters under switching device fault status has been proposed, along with an effective diagnosis method. With the proposed scheme, the pwm converter can be properly operated even when one of the switching devices of the converter is out of control, so that it may ensure the performance and reliability of pwm converters to be increased. The developed scheme is explained in theoretically and the validity is verified by the informative simulation and experimental results in detail.

  • PDF

A New Optimum Design for a Single Input Fuzzy Controller Applied to DC to AC Converters

  • Ayob, Shahrin Md.;Salam, Zainal;Azli, Naziha Ahmad
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.306-312
    • /
    • 2010
  • In this paper, the design of an optimum single input Fuzzy controller for application in dc to ac converters is presented. Contrary to conventional Fuzzy controllers, the proposed controller has a smaller number of rules and tuning parameters but is capable of performing identically to a conventional controller. These benefits lead to a simpler controller design. The controller is designed as a PI controller for small-signal disturbances. However, for optimum large-signal performance, heuristic tuning is used. The tuning is less complicated and hence optimum large-signal performance is achievable. The system is simulated and a hardware prototype was developed for comparison purposes.

The Parallel Operation of AC to DC PWM Converters for a High Speed Railway Train (고속전철용 입력 AC/DC PWM 컨버터의 병령운전)

  • Ryu, Hong-Je;U, Myeong-Ho;Kim, Jong-Su;Im, Geun-Hui;Won, Chung-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.272-281
    • /
    • 2000
  • This paper deals with the parallel operation of several numbers of PWM converters for a high speed railway train application. Several considerations are made to reduce the transformer interaction which can cause a current control problem in severe case. Also, in this paper, novel control strategy is proposed to achieve a harmonic free primary-side current control under a light load condition using one current sensor independent of the number of converters. In addition, the modified predictive current controller, which is suitable to a digital current controller with a relatively large sampling period, is used. Finally, to verify the system validity, digital control system with TMS320C44 micro-processor and small scale simulator are made and tested.

  • PDF

Instantaneous Control of Single Phase AC/DC PWM Parallel Converters (단상 AC/DC PWM 병렬 컨버터의 순시 제어)

  • Won June-Hee;Cheong Dal-Ho;Oh Jae-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.356-359
    • /
    • 2001
  • In this paper, the new control algorithm is proposed that compensates instantaneously the active and reactive components of the input currents by the synchronous d,q axis conversion of a single-phase current in controlling the single-phase AC/DC parallel converters for a high speed train. The leakage inductance of a transformer was used as a boost inductance and the ripple of a transformer's primary current was reduced considerably by the parallel operation of the two converters with a proper switching phase-shift. The stable and fast control response characteristic is certificated by a simulation.

  • PDF

A Study on the Single-Stage AC/DC PFC TTFC(TWO-Transistor Forward Converter) (단일전력단 AC/DC PFC TTFC(Two-Transistor Forward Converter)에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1432-1434
    • /
    • 2005
  • Single-stage converters are simpler and less expensive than convention two-stage converters. It can be a challenge, however, to design single-stage converters to satisfy certain key criteria such as input power factor, primary-side do bus voltage, and output voltage ripple. This is especially true for higher power single-stage AC/DC TTFC(Two-Transistor Forward Converter).

  • PDF

DSP(TMS320C40) Control of Three-phase PWM AC/DC Converter (TMS320C40을 이용한 3상 PWM AC/DC 컨버터 제어)

  • Byun, Young-Bok;Kim, Eun-Soo;Koo, Heun-Hoi;Joe, Kee-Yeon;Park, Sung-Jun;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.518-520
    • /
    • 1996
  • High frequency switching converters are becoming more popular because of several benefits which are essential in power conversion system. This paper introduces a high speed digital controller using TMS320C40 DSP chip which can be used for high frequency switching converters and demonstrates its performance by operating three-phase PWM AC/DC converter with unity power factor at 20kHz sampling frequency. TMS320C40 DSP chip operates with 40-ns instruction cycle times and is capable of 275 MOPS. The running time of real time control loop at the three-phase PWM AC/DC converter is $44.6{\mu}sec$.

  • PDF

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • ;;Jaan Jarvik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • When solving the problems of electric power quality the converters with high Power factor are useful for the DC arc furnace power supply. In this paper, resonant converters of 50(60) Hz AC to DC arc described, where in each period of network voltage the capacitor and inductor of an oscillatory circuit are switched from series into parallel and vice versa parametrically. The duration of series and parallel connection and also the transformation ratio are dependent on load. Parallel oscillatory circuit restricts the short circuit current. These converters have high power factor from no-load to short-circuit and fit very well to supply are furnaces.

Voltage Stability Analysis of AC/DC Systems (AC/DC 계통의 전압안정도 해석)

  • Nam, Hae-Kon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.