• Title/Summary/Keyword: ac traction power supply system

Search Result 24, Processing Time 0.026 seconds

A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System (철도 급전시스템에서의 고조파 해석 및 대책 연구)

  • 오광해;이장무;창상훈;한문섭;김길상
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

A study on energy regeneration of power supply for DC electric traction system (직류전철용 전력공급 장치의 에너지희생에 관한 연구)

  • Bang Hyo-Jin;Jang Su-jin;Song Sang-Hun;Won Chung-Yuen;Kim Yong-Ki;Ahn yu-Bok
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.439-442
    • /
    • 2004
  • This paper described a dc power system, which can generate the excessive do power form do bus line to ac source in substation for traction system. The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation.

  • PDF

A Study on the Power Factor Improvement of DC Power Regenerating Systems Using SVPWM (SVPWM을 이용한 직류전력 회생시스템의 역률개선에 관한 연구)

  • Ko, Young-Min;Chae, Soo-Yong;Seo, Young-Min;Jeong, Dae-Taek;Bae, Young-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.196-198
    • /
    • 2007
  • In the substations for traction systems and the large-scale discharging system of secondary batteries, the voltage of DC bus line goes up by the regenerated energy and the energy is usually wasted in resistor for system stability. This paper proposes the DC power regenerating system using a three phase PWM inverter. The proposed system can regenerate the excessive DC power from DC bus line to AC supply and control the power factor of AC supply to unity. To implement unity power factor, the magnitude of the inverter output voltage should be higher than that of AC supply and therefore SVPWM technique is adopted. Computer simulations are carried out to verify the validity of the proposed system.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Harmonic Analysis for Traction Power Supply System Using Four-Port Network Model (6단자망 회로모델을 이용한 전기철도 급전시스템의 고조파 해석)

  • Chang, Sang-Hun;O, Gwang-Hye;Kim, Ju-Rak;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.255-261
    • /
    • 2002
  • Recently, traction motors in trains are supplied with single phase a.c. power. After this power is converted to d.c. power, it is inverted to three phase power to operate traction motors. As going through the process of the conversion, harmonic current is generated in train. The method of conventional analysis on harmonics, studied by RTRI, is modeled with equivalent circuit of ac AT-fed electric railroad system using by the distributed constant circuit. However, this circuit as two-port network model has some difference in comparison with real system. The reason why the conventional method is different from the real system is that the conventional method dose not include three conductor groups, that is catenary, rail, and feeder, and admittance between the conductors for line capacitance. Therefore, this method has a little error. This paper proposes new method to more effectively estimate Harmonic current. In this method, numerous components in electric railway are categorized and each component is defined as a four- port network model. The equivalent circuit for the entire power supply system is also described into a four-port network model with connections of these components. In order to evaluate the efficiency and the accuracy of a proposed method, it is compared with values measured in Kyung-Bu high speed line and ones calculated by the conventional method.

Analysis of Voltage Unbalance in the Electric Railway Depot Using Two-port Network Model (4단자 회로망 모델을 이용한 전기철도 차량기지의 전압불평형 해석)

  • Chang, Sang-Hoon;Oh, Kwang-Hae;Kim, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.248-254
    • /
    • 2001
  • The traction power demand highly varies with time and train positions and the traction load is a large-capacity current at single phase converted from 3-phase power system. Subsequently, each phase current converted from 3-phase power system cannot be maintained in balance any longer and thus the traction load can bring about imbalance in three-phase voltage. Therefore, the exact assessment of voltage unbalance must be carried out preferentially as well as load forecast at stages of designing and planning for electric railway system. The evaluation of unbalance voltage in areas, such as electric railway depots should be a prerequisite with more accuracy. The conventional researches on voltage unbalance have dealt with connection schemes of the transformers used in ac AT-fed electric railroads system and induced formulas to briefly evaluate voltage unbalance in the system(3). These formulas are still being used widely due to their easy applicabilities on voltage unbalance evaluation. Meanwhile, they don't take into account detailed characteristics of ac AT-fed electric railroads system, being founded on some assumptions. Accordingly. accuracy still remains in question. This paper proposes a new method to more effectively estimate voltage unbalance index. In this method, numerous diverted circuits in electric railway depots are categorized in three components and each component is defined as a two-port network model. The equivalent circuit for the entire power supply system is also described into a two-port network model by making parallel and/or series connections of these components. Efficiency and accuracy in voltage unbalance calculation as well can be promoted by simplifying the circuits into two-port network models.

  • PDF

A review of the train position detection method for neutral section with energized condition (무절연구간을 위한 열차위치검지방식 검토)

  • Lee, Tae-Hoon;Lee, See-Bin;Hong, Hyun-Pyo;Lee, Hee-Soon;Park, Ki-Bum
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1100-1105
    • /
    • 2010
  • The high speed line and conventional line are a single-phase AC feeding system; and power supplies of different phases meet at SS(SubStation)s or SP(Sectioning Post)s. These sections should be negotiated with the main circuit breaker in the traction vehicle switched off, whereby the length of the neutral zone prevents the pantographs shunting adjacent overhead line section. In order for electric railway vehicles to make power running there, there must be a power supply changeover section (approx. for 1km), where a changeover switch changes a power supply to the other power supply of a train running direction sequentially. For a thorough changeover switching control, the precise train position detection is necessarily required. In this paper, to realize the ground-based train position detection method, configuration scheme of train position detection equipment is suggested by using track circuit and axle counter.

  • PDF

Regeneration Inverter System for DC Traction with Hormonic Reduction Capability (고조파 저감 능력을 가진 직류전철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yong-Ki;Bang, Hyo-Jin;Song, Sang-Hun;Ahn, Kyu-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-104
    • /
    • 2004
  • This paper proposes a dc power regenerating systems, which can generate the excessive dc power from dc bus line to ac supply in substations for traction system The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As an regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

A Study on the Power Factor Improvement of DC Power Regenerating Systems (직류전력 회생시스템의 역률개선에 관한 연구)

  • 김경원;윤인식;서영민;윤덕용;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.410-415
    • /
    • 2001
  • This paper proposes a new control scheme for the power factor improvement of DC power regenerating systems, which can regenerate the excessive DC power from DC bus line to AC supply in substations for traction systems. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three-phase square-wave inverters and composed of two inverters, zig-zag connected output transformers, and an AC filter. The output voltages of the regenerating system are not sinusoidal. However, regenerated complex power is analyzed on the basis of fundamental components and thus the reactive power produced by harmonics is not considered. Therefore, it is needed a new control scheme capable of controlling the reactive power nearly to zero even for nonsinusoidal cases. To verify the validity of the proposed control scheme, computer simulations are carried out. And the results show that the power factor is theoretically higher than 0.99.

  • PDF