• 제목/요약/키워드: ac motor drive

검색결과 233건 처리시간 0.034초

전압형 인버터의 출력전압 상승률 억제를 위한 출력 필터의 설계 (Output Filter Design for Suppression of High Voltage Gradient in the Voltage-Fed PWM Inverter)

  • 김성준;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.296-298
    • /
    • 1995
  • This paper proposes a new filter topology that suppresses the high voltage gradient(dv/dt) in ac motor terminals. The high voltage gradient(dv/dt) causes over voltages on the motor windings, the degradation or motor insulation, and the bearing failure. Moreover surge voltage with high voltage gradient(dv/dt) in the PWM inverter red drive system where long line cables are required causes more serious problem to the motor. Thus, the most advisable method is attaching output filter to the inverter output terminals. The conventional output filters have several problems such as bulky size, difficulty or parameter tuning. The proposed filter can be relatively smaller than the conventional filters. By the proposed filter, the shaping or PWM waveform can considerably suppress high dv/dt in motor feeding cable from the inverter. The effectiveness or the proposed filter is compared with that or the conventional one and is verified by the computer simulation.

  • PDF

전기자전거 응용을 위한 배터리 충전 기능 내장형 부스트 컨버터 (Boost Converter Embedded Battery Charging Function for Application of E-bike)

  • 김다솜;김상연;강경수;노정욱
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.175-181
    • /
    • 2016
  • In the conventional E-bike, a 42 V/10 A Li-ion battery drives a 24 V/10 A BLDC motor via a 6-switch PWM DC/AC inverter. The major problems of the conventional battery-fed motor drive systems are listed as follows. To charge the battery, an external battery charger (adapter) is required, which degrades the portability of E-bike users. In addition, given the high-frequency operation of the motor drive inverter, the switching losses are significant, which degrades the whole power efficiency. High-voltage batteries (42 V) require a complex battery management system (BMS), which degrades the reliability of the battery pack. In this paper, an embedded boost-converter battery charger for E-bikes is proposed. The variable output boost converter, which converts 16.8 V battery voltage to the required variable voltage of the inverter input, can use a low-voltage battery and thus improve the reliability of batteries. By varying the inverter input voltage via boost converter, a DC link voltage control method can be applied to reduce the switching frequency of the inverter, which improves the whole power efficiency. Given that the function of a flyback charger is integrated in the proposed boost converter, the portability of the E-bike user can be maximized by excluding an external adapter. The validity of the proposed circuit will be confirmed by operation mode analysis and simulation. Moreover, experimental results of integrative charger using Li-ion battery and 200 W motor test will be showed with a prototype sample as well.

저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템 (Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement)

  • 안영주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Sensorless Vector Control for Induction Motor Drive using Modified Tabu Search Algorithm

  • Lee, Yang-Woo;Kim, Dong-Wook;Lee, Su-Myoung;Park, Kyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.377-381
    • /
    • 2003
  • The design of speed controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the initial parameters of input-output. The second part is for real time changing parameters of input-output using tabu search. Proposed tabu search is improved by neighbor solution creation using Gaussian random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation.

  • PDF

TMS320F2812 DSP와 스마트 파워모듈을 사용한 유도전동기 소형 벡터제어 시스템의 구현 (Implementation of Compact Vector Control System for Induction Motor Using TMS320F2812 DSP and Smart Power Module)

  • 임정규;김석환;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.11-14
    • /
    • 2004
  • This paper presents an implementation of compact vector control system for induction motor using a digital signal processor (DSP) and a smart power module (SPM). The DSP TMS320F2812 has most necessary functions for ac motor control in a single chip and SPM provides a compact power stage. The indirect vector control algorithm is implemented in the drive system using these devices. The developed system is applied by 0.8kW induction servo motor and the all functions are verified through the experiments.

  • PDF

신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시 (Chip Disposal State Monitoring in Drilling Using Neural Network)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF

퍼지 속도 제어기를 이용한 BLDD 모타의 이산 위치 제어 (Digital Position Control of BLDD Motor using Fuzzy Speed Controller)

  • 고종선;황재규;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.892-894
    • /
    • 1993
  • In this paper, a new control for the robust position control of a brushless direct drive(BLDD) motor using fuzzy logic controller(FLC) is presented. The integral-proportional(IP) position with speed FLC is employed to obtain the robust BLDD motor system, which is approximately linearized using the field-orientation method for an AC servo. The speed FLC for a BLDD motor has the two rule tables. One is the coarse rule table for the transient state and another is the fine rule table for the steady state. The overall system is controlled by using the microprossor in IBMPC 486 and the the robustness is also obtained.

  • PDF

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.

교류전동기 벡터제어를 위한 전류 측정오차의 저감에 관한 연구 (Diminution of Current Measurement Error for Vector Controlled AC Motor Drives)

  • 정한수;김장목;김철우;최철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 추계학술대회 논문집
    • /
    • pp.32-36
    • /
    • 2004
  • In order to achieve high performance vector control, it is essential to measure accurate ac current. The errors generated from current path are inevitable, and they could be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times of stator electrical frequency respectively. Since these undesirable ripples bring about bad influences to motor driving system, a compensation algorithm must be needed in the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate the current measurement errors. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness of the variation of the mechanical parameters, the application of the steady and transient state, the easy implementation, and less computation time.

  • PDF