• Title/Summary/Keyword: abutment fracture

Search Result 97, Processing Time 0.024 seconds

Axial wall thickness of zirconia abutment in anterior region (전치부 지르코니아 지대주의 축벽 두께)

  • Moon, Seung-Jin;Heo, Yu-Ri;Lee, Gyeong-Je;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.345-351
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the proper axial thickness of zirconia abutment applied to implant in the anterior region. Materials and methods: Zirconia abutments were prepared at different axial wall thickness by processing pre-sintered zirconia blocks via CAD/CAM to obtain equal specimens. The abutments were each produced with a thickness of 0.5 mm (Group 1), 0.8 mm (Group 2), 1.2 mm (Group 3), or 1.5 mm (Group 4). The implant used in this study was a external connection type one (US, Osstem, Pussan, Korea) product and the zirconia abutment was prepared via replication of a cemented abutment. The crowns were prepared via CAM/CAM with a thickness of 1.5 mm and were cemented to the abutments using $RelyX^{TM}$ UniCem cement. A universal testing machine was used to apply load at 30 degrees and measure fracture strength of the zirconia abutment. Results: Fracture strength of the abutments for Group 1, Group 2, Group 3, and Group 4 were $236.00{\pm}67.55N$, $599.00{\pm}15.80N$, $588.20{\pm}33.18N$, and $97.83{\pm}98.13N$, respectively. Group 1 showed a significantly lower value, as compared to the other groups (independent Mann-Whitney U-test. P<.05). No significant differences were detected among Group 2, Group 3, and Group 4 (independent Mann-Whitney U-test. P>.05). Conclusion: Zirconia abutment requires optimal thickness for fracture resistance. Within the limitation of this study, > 0.8 mm thickness is recommended for zirconia abutment in anterior implants.

THE EFFECT OF SCREW HOLE SEALING METHOD ON ABUTMENT SCREW LOOSENING IN DENIAL IMPLANT (임플랜트 보철물의 나사구멍 봉쇄방법이 지대나사 풀림에 미치는 영향에 관한 연구)

  • Lim, Jae-Bin;Yim, Soon-Ho;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.767-780
    • /
    • 1997
  • One of the most common problems of implant prosthesis is the screw loosening of abutment screws. This brings on discomfort in mastication, inflammation in the peri-implant tissue due to poor oral hygiene and fracture of prosthesis or loss of osseointegration. To prevent screw loosening, appropriate implantation to direct the occlusal force to the long axis of the implant, accurate design of the superstructure, decrease of the occlusal table, and adequate torque on the abutment screw are necessary. In this study the screw loosening torque was evaluated in implants with dimples or flutes in the internal surface of abutment screw holes. The abutments were fastened with slot type and hexagonal type abutment screws and were sealed with vinyl poly siloxane impression and bite registration material respectively. The screw loosening torque was evaluated after 1,800 and 12,600 times loading under a loading machine. The results were as follows. 1. The flute form group showed significantly higher loosening torque compared to the dimple form group and the group with no inner surface treatment (p<0.05). 2. There was no statistical difference in loosening torque according to the sealing materials. 3. The loosening torque according to the types of abutment screw showed no significant difference. 4. The loosening torque was significantly higher after 1800 times loading compared to 12600 times loading(p<0.05). From the above results. it is thought that formation of a flute in the internal surface of the screw hole decreases the chance of screw loosening, but the sealing materials and types of abutment screw did not show significant difference in prevention of screw loosening.

  • PDF

Mechanical analysis of conventional and small diameter conical implant abutments

  • Moris, Izabela Cristina Mauricio;Faria, Adriana Claudia Lapria;De Mattos, Maria Da Gloria Chiarello;Ribeiro, Ricardo Faria;Rodrigues, Renata Cristina Silveira
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.158-161
    • /
    • 2012
  • PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants ($3.5{\times}11$ mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at $45^{\circ}$ inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated.

Optimization of the Groove Depth of a Sealing-type Abutment for Implant Using a Genetic Algorithm (유전자알고리즘을 이용한 임플란트용 실링어버트먼트의 홈 깊이 최적화에 관한 연구)

  • Lee, Hyeon-Yeol;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.24-30
    • /
    • 2018
  • Dental implants are currently widely used as artificial teeth due to their good chewing performance and long life cycle. A dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, gap at the interface surface between the abutment and the fixture is often occurred, and results in some deteriorations such as loosening of fastening screw, dental retraction and fixture fracture. To cope with such problems, a sealing-type abutment having a number of grooves along the conical-surface circumference was previously developed, and shows better sealing performance than the conventional one. This study carries out optimization of the groove shape by genetic algorithm(GA) as well as structural analysis in consideration of external chewing force and pretension between the abutment and the fixture. The overall optimization system consists of two subsystems; the one is the genetic algorithm with MATLAB, and the other is the structural analysis with ANSYS. Two subsystems transmit and receive the relevant data with each other throughout the optimization processes. The optimization result is then compared with that of the conventional one with respect to the contact pressure and the maximum stress. The result shows that the optimized model gives better sealing performance than the conventional sealing abutment.

Machining Tolerance of Various Implant Systems and their Components (치과용 임플란트 시스템의 기계적 가공오차에 관한 연구)

  • Kim, Hyeong-Seob;Kwon, Kung-Rock;Han, Jung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Misfit of implant components was very important in terms of prosthodontics. they has been linked to prosthetic complications such as screw loosening and fracture. Although there are many results about rotational freedom or machining tolerance between fixture and abutments, the data about domestic implant systems are lacking. The aim of this in vitro study was to evaluate the rotational freedom of domestic external and internal connection implant systems between their fixtures/anlaogs and abutments comparing imported systems. Materials and Methods: Rotational freedom between abutments and fixtures/analogs was investigated by using digitalized rotational angle measuring device. (1) 1 domestic external connection system(Neobiotec) and 2 imported external connection systems(Nobel Biocare, Anthorgyr), (2) 1 domestic internal connection system(Dentium) and 4 imported external connection systems(Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply), and (3) 1 domestic zirconia external connection abutment(ZirAce) were evaluated. Each group has 3 samples. Mean values for each group were analyzed. Results: The differences relative to rotational freedom between domestic and imported implant systems were observed but domestic external connection implant system showed about 2.67 degrees(in case of fixture) and internal connection system showed about 4.3 degrees(in case of fixture). Domestic zirconia abutment showed less than 3 degrees of rotational freedom in a situation where the abutment was connected to an implant fixture egardless of domestic or imported systems. Conclusion: Newly developed digitalized rotational angle measuring device has high measuring resolution. The rotational freedom of domestic implant systems were similar to imported implant systems.

Effects of grooved abutment on stability of implant abutment screw (Grooved abutment가 임플란트 지대주 연결나사의 안정성에 미치는 영향)

  • Sim, Il-Gwang;Yang, Seung-Won;Shim, June-Sung;Kim, Jee-Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.387-392
    • /
    • 2016
  • Purpose: The aim of this study was to investigate the effects of grooved abutments on abutment screw loosening. Materials and methods: This study was conducted to evaluate the abutment screw loosening after 6 months for 50 patients (51 implants) treated at the department of Prosthodontics in Yonsei University Dental Hospital from March, 2015 to July, 2015. A control group with non-grooved abutment consists of 30 implants, and an experimental group with grooved abutment consists of 21 implants. Astra, Straumann, Implantium, Osstem system were used in the study. The abutments with loose screws cases after a period of 6 months has been investigated, with two kinds of measurements: 1) measuring the additional rotational angle on abutment during placement with the same force, 2) measuring the PTV on bucco-cervical area of implant crown. All data collected has been analyzed by normality test followed by Mann-Whitney test using SPSS program. Results: No complications were reported after 6 months for the 51 implants. Abutment screw loose and crown fracture have not been seen in the study groups. The data collected from the two measurements showed no significant differences between the two groups with P-value 0.576 (average= control group: $7.35^{\circ}$, experimental group: $4.75^{\circ}$) for the additional rotational angle measurement and with P-value 0.767 for PTV. Conclusion: There are no significant differences between the grooved and non-grooved abutment in screw stability. However, further studies with long-term followups and larger group of patients is needed in order to investigate the effects of grooved abutment on screw stability.

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

Influence of the connection design and titanium grades of the implant complex on resistance under static loading

  • Park, Su-Jung;Lee, Suk-Won;Leesungbok, Richard;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the resistance to deformation under static overloading by measuring yield and fracture strength, and to analyze the failure characteristics of implant assemblies made of different titanium grades and connections. MATERIALS AND METHODS. Six groups of implant assemblies were fabricated according to ISO 14801 (n=10). These consisted of the combinations of 3 platform connections (external, internal, and morse tapered) and 2 materials (titanium grade 2 and titanium grade 4). Yield strength and fracture strength were evaluated with a computer-controlled Universal Testing Machine, and failed implant assemblies were classified and analyzed by optical microscopy. The data were analyzed using the One-way analysis of variance (ANOVA) and Student's t-test with the level of significance at P=.05. RESULTS. The group $IT4_S$ had the significantly highest values and group IT2 the lowest, for both yield strength and fracture strength. Groups $IT4_N$ and ET4 had similar yield and fracture strengths despite having different connection designs. Group MT2 and group IT2 had significant differences in yield and fracture strength although they were made by the same material as titanium grade 2. The implant system of the similar fixture-abutment interfaces and the same materials showed the similar characteristics of deformation. CONCLUSION. A longer internal connection and titanium grade 4 of the implant system is advantageous for static overloading condition. However, it is not only the connection design that affects the stability. The strength of the titanium grade as material is also important since it affects the implant stability. When using the implant system made of titanium grade 2, a larger diameter fixture should be selected in order to provide enough strength to withstand overloading.

AN ANALYSIS AND MANAGEMENT OF FRACTURED IMPLANTS (파절된 임프란트 고정체의 분석과 처치)

  • Han Chang-Hyun;Kim Sung-Hyun;Hee Seong-Joo;Ku Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.25-36
    • /
    • 2001
  • Among the numerous factors contributing to implant failure, the most common are infection, failure of proper healing and overload. These factors may occur combined. Implant fractures are one of the complications resulting from overload. Implant fracture is not a common feature, but once it occurs it causes very unpleasant circumstances for the patient as well as for the practitioner. Only few studies have been reported regarding this subject. Thus, little is known about its solutions. It is important that analyzing reasons for implant fracture and finding appropriate solutions. Factors leading to implant fracture are design, material defects, nonpassive fit of prosthetic framework and biomechanical overload. Previous studies have reported that implant fractures ares associated with marginal bone loss and occur mostly in the posterior regions and that most patients showing parafunctional habits also have implant fracture. Abutment and gold screw loosening or fracture were also observed in some of the cases previous to implant fracture. Similar observations were seen in our hospital as well. The following cases will present implant fracture cases which have been successfully treated regarding function and biomechanics. This was achieved by means of using increased number of futures, increasing fixture diameter and establishing proper occlusion.

  • PDF

Removal of fractured implant screws: case report (파절된 임플란트 나사의 제거: 증례보고)

  • Kim, Tae-Su;Lee, Jae-Hyun;Lee, Won-Sup;Lee, Su-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • Screw loosening and screw fracture of abutment is one of most frequent mechanical complications in implant restoration. Fractured fragments in implant restoration like abutment and screw should be completely removed and the procedure needs minimal damage to the fixture of implant. In some cases, it could fail to remove fractured fragments and cause a lot of damage to the fixture of implant. These situations could render implant unusable at the worst. This article describes three different situations and simple techniques for successful removal of fractured fragments without damage of implants. The procedures used are described in this clinical report.