• Title/Summary/Keyword: abundant semigroup

Search Result 4, Processing Time 0.017 seconds

LEFT QUASI-ABUNDANT SEMIGROUPS

  • Ji, Zhulin;Ren, Xueming;Wang, Yanhui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1159-1172
    • /
    • 2019
  • A semigroup S is called a weakly abundant semigroup if its every $\tilde{\mathcal{L}}$-class and every $\tilde{\mathcal{R}}$-class contains an idempotent. Our purpose is to study an analogue of orthodox semigroups in the class of weakly abundant semigroups. Such an analogue is called a left quasi-abundant semigroup, which is a weakly abundant semigroup with a left quasi-normal band of idempotents and having the congruence condition (C). To build our main structure theorem for left quasi-abundant semigroups, we first give a sufficient and necessary condition of the idempotent set E(S) of a weakly abundant semigroup S being a left quasi-normal band. And then we construct a left quasi-abundant semigroup in terms of weak spined products. Such a result is a generalisation of that of Guo and Shum for left semi-perfect abundant semigroups. In addition, we consider a type Q semigroup which is a left quasi-abundant semigroup having the PC condition.

ON REES MATRIX REPRESENTATIONS OF ABUNDANT SEMIGROUPS WITH ADEQUATE TRANSVERSALS

  • Gao, Zhen Lin;Liu, Xian Ge;Xiang, Yan Jun;Zuo, He Li
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.481-500
    • /
    • 2009
  • The concepts of *-relation of a ($\Gamma$-)semigroup and $\bar{\Gamma}$-adequate transversal of a ($\Gamma$-)abundant semigroup are defined in this note. Then we develop a matrix type theory for abundant semigroups. We give some equivalent conditions of a Rees matrix semigroup being abundant and some equivalent conditions of an abundant Rees matrix semigroup having an adequate transversal. Then we obtain some Rees matrix representations for abundant semigroups with adequate transversals by the above theories.

ABUNDANT SEMIGROUPS WITH QUASI-IDEAL S-ADEQUATE TRANSVERSALS

  • Kong, Xiangjun;Wang, Pei
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • In this paper, the connection of the inverse transversal with the adequate transversal is explored. It is proved that if S is an abundant semigroup with an adequate transversal $S^o$, then S is regular if and only if $S^o$ is an inverse semigroup. It is also shown that adequate transversals of a regular semigroup are just its inverse transversals. By means of a quasi-adequate semigroup and a right normal band, we construct an abundant semigroup containing a quasi-ideal S-adequate transversal and conversely, every such a semigroup can be constructed in this manner. It is simpler than the construction of Guo and Shum [9] through an SQ-system and the construction of El-Qallali [5] by W(E, S).

CONGRUENCES ON ABUNDANT SEMIGROUPS WITH QUASI-IDEAL S-ADEQUATE TRANSVERSALS

  • Wang, Lili;Wang, Aifa
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this paper, we give congruences on an abundant semigroup with a quasi-ideal S-adequate transversal $S^{\circ}$ by the congruence pair abstractly which consists of congruences on the structure component parts R and ${\Lambda}$. We prove that the set of all congruences on this kind of semigroups is a complete lattice.