• Title/Summary/Keyword: abundance gradient

Search Result 56, Processing Time 0.029 seconds

CHEMICAL EVOLUTION OF THE GALAXY: RADIAL PROPERTIES

  • PARK BYEONG-GON;KANG YONG HEE;LEE SEE-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.63-73
    • /
    • 1996
  • The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc$Y_1$ and -0.123dex/kpc in model $Y_2$, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model $Y_1$ is getting flatter with decreasing radius, while that in model $Y_2$ is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.

  • PDF

RADIAL ABUNDANCE GRADIENT IN GLOBULAR CLUSTERS

  • Chun, M.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 1981
  • The observed radial UBV colour variations (both B-V and U-B) of some globular clusters are examined for correlations with radial variations in the integrated spectra. The results show that the presence of a radial colour gradient is correlated with the presence of a gradient of the CN (and possibly the G-band) line strength, in the sense that the CN (and possibly the G-band) is stronger in the centre (where the cluster is redder) and becomes weaker in the outer region of the cluster (where the cluster is bluer). This may suggest that a primordial abundance, possibly nitrogen and carbon gradient was set up in the early stage of cluster formation.

  • PDF

ABUNDANCE VARIATION AMONG GIANT STARS IN THE CENTRAL PART OF 47 TUC

  • Chun, M.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 1979
  • Four stars in the central region of 47 Tuc were observed spectroscopically using IPCS. The observed result showed that two asymptotic giant branch stars have the excess of nitrogen compared with the red giant branch stars, which indicates that the radial colour gradient in a globular clursters, at least for 47 Tuc, comes from the abundance gradient among the giant stars.

  • PDF

Z-Distribution and Period Gradient of Classical Cepheids in the Galactic Plane

  • Kim, Chul-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.81-92
    • /
    • 1986
  • The z-coordinate distribution of cepheids was studied and the finding of Fernie(1968) that the cepheid layer is inclined to ward a formal Galactic plane and the Sun is located above the cepheid plane was confirmed. It was found that the z-distribution fits better to the parabolic form than a barometric form and a scale height of 54 pc was found. The well known phenomenon that the periods of classical cepheids decrease away from the Galactic center was crudely interpreted as due to an age gradient rater than an abundance gradient under the assumption that relations between the period and galactocentric distance, and between the abundance and period are linear.

  • PDF

THE LATE TYPE SPIRAL GALAXY NGC 7793. I. ABUNDANCES OF HII REGIONS

  • Chun, Mun-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 1983
  • Four HII regions of the Sd galaxy NGC 7793 were observed using AAT/IPCS. From these spectra we determined abundances of the elements using observed emission lines and electron temperatures. The calculated abundances show that this galaxy does not show any significant radial abundance gradient. The mean oxygen abundance is very much like the Orion nebulae and the nitrogen abundance is similar to the late type barred spiral galaxy NGC 1313.

  • PDF

How Much Do We Understand the Properties of Supernova Remnants in M81 and M82?

  • Sohn, Jubee;Lee, Myung Gyoon;Lee, Jong Hwan;Lim, Sungsoon;Jang, In Sung;Ko, Youkyung;Koo, Bon-Chul;Hwang, Narae;Kim, Sang Chul;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2015
  • We present an optical spectroscopic study of 28 supernova remnant (SNR) candidates in M81 and two SNR candidates in M82. The optical spectra of these SNR candidates were obtained using the MMT/Hectospec as a part of the K-GMT Science Program. Based on the [S II]/$H{\alpha}$ ratio and the radial velocity, we find that twenty six out of the M81 candidates are genuine SNRs. Two SNR candidates in M82 are thought to be shocked condensations in the galactic outflow or SNRs. In the spectral line ratio diagrams, M81 SNRs are divided into two groups: an [O III]-strong group and an [O III]-weak group. The [O III]-weak SNRs have larger sizes, and may have faster shock velocity. We estimate the nitrogen and oxygen abundance of the SNRs from the comparison with shock-ionization models. We find a radial gradient in nitrogen abundance, $dLog(N/H)/dlogR=-0.023{\pm}0.009\;dex\;kpc^{-1}$ little evidence for the gradient in oxygen abundance. The nitrogen abundance shows shallower gradient than those of the planetary nebulae and H II regions of M81. We find five X-ray emitting SNRs. Their X-ray hardness colors are consistent with thermal SNRs.

  • PDF

THEORETICAL STUDY ON OBSERVED COLOR-MAGNITUDE DIAGRAMS

  • Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.41-70
    • /
    • 1979
  • From $B\ddot{o}hm$-Vitense's atmospheric model calculations, the relations, [$T_e$, (B-V)] and [B.C, (B-V)] with respect to heavy element abundance were obtained. Using these relations and evolutionary model calculations of Rood, and Sweigart and Gross, analytic expressions for some physical parameters relating to the C-M diagrams of globular clusters were derived, and they were applied to 21 globular clusters with observed transition periods of RR Lyrae variables. More than 20 different parameters were examined for each globular cluster. The derived ranges of some basic parameters are as follows; $Y=0.21{\sim}0.33,\;Z=1.5{\times}10^{-4}{\sim}4.5{\times}10^{-3},\;age,\;t=9.5{\sim}19{\times}10^9$ years, mass for red giants, $m_{RG}=0.74m_{\odot}{\sim}0.91m_{\odot}$, mass for RR Lyrae stars, $m_{RR}=0.59m_{\odot}{\sim}0.75m_{\odot}$, the visual magnitude difference between the turnoff point and the horizontal branch (HB), ${\Delta}V_{to}=3.1{\sim}3.4(<{\Delta}V_{to}>=3.32)$, the color of the blue edge of RR Lyrae gap, $(B-V)_{BE}=0.17{\sim}0.21=(<(B-V)_{BE}>=0.18),\;[\frac{m}{L}]_{RR}=-1.7{\sim}-1.9$, mass difference of $m_{RR}$ relative to $m_{RG},(m_{RG}-m_{RR})/m_{RG}=0.0{\sim}0.39$. It was found that the ranges of derived parameters agree reasonably well with the observed ones and those estimated by others. Some important results obtained herein can be summarized as follows; (i) There are considerable variations in the initial helium abundance and in age of globular clusters. (ii) The radial gradient of heavy element abundance does exist for globular clusters as shown by Janes for field stars and open clusters. (iii) The helium abundance seems to have been increased with age by massive star evolution after a considerable amount (Y>0.2) of helium had been attained by the Big-Bang nucleosynthesis, but there is not seen a radial gradient of helium abundance. (iv) A considerable amount of heavy elements ($Z{\sim}10{-3}$) might have been formed in the inner halo ($r_{GC}$<10 kpc) from the earliest galactic co1lapse, and then the heavy element abundance has been slowly enriched towards the galactic center and disk, establishing the radial gradient of heavy element abundance. (v) The final galactic disk formation might have taken much longer by about a half of the galactic age than the halo formation, supporting a slow, inhomogeneous co1lapse model of Larson. (vi) Of the three principal parameters controlling the morphology of C-M diagrams, it was found that the first parameter is heavy clement abundance, the second age and the third helium abundance. (vii) The globular clusters can be divided into three different groups, AI, BI and CII according to Z, Y an d age as well as Dickens' HB types. BI group clusters of HB types 4 and 5 like M 3 and NGC 7006 are the oldest and have the lowest helium abundance of the three groups. And also they appear in the inner halo. On the other hand, the youngest AI clusters have the highest Z and Y, and appear in the innermost halo region and in the disk. (viii) From the result of the clean separations of the clusters into three groups, a three dimensional classification with three parameters, Z, Y and age is prsented. (ix) The anomalous C-M diagrams can be expalined in terms of the three principal parameters. That is, the anomaly of NGC 362 and NGC 7006 is accounted for by the smaller age of the order of $1{\sim}2{\times}10^9$ years rather than by the helium abundance difference, compared with M 3. (x) The difference in two Oosterhoff types I and II can be explained in terms of the mean mass difference of RR Lyrae variables rather than in terms of the helium abundance difference as suggested by Stobie. The mean mass of the variables in Oosterhoff type I clusters is smaller by $0.074m_{\odot}$ which is exactly consistent with Rood's estimate. Since it was found that the mean mass of RR Lyrae stars increases with decreasing Z, the two Oosterhoff types can be explained substantially by the metal abundance difference; the type II has Z<$3.4{\times}10^{-4}$, and the type I has higher Z than the type II.

  • PDF

Seasonal Variation in the Abundance of the Demersal Copepod Pseudodiaptomus sp. (Calanoida, Pseudodiaptomidae) in the Seomjin River Estuary, Southern Korea

  • Park Eun Ok;Suh Hae-Lip;Soh Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2005
  • We conducted a year-long survey in 2000 to examine seasonal fluctuations in the abundance of the demersal copepod Pseudodiaptomus sp., the dominant copepod in the Seomjin River estuary, where the spring tide strongly affects changes in salinity gradients. Pseudodiaptomus sp. was found throughout the year in the entire range of salinities measured, but most individuals appeared at oligohaline conditions below 5.0 psu, and less than $2\%$ were observed in polyhaline conditions above 18.0 psu. The peak abundance occurred during autumn in oligohaline waters, and the density was relatively low during the rainy season in summer. In spring and autumn, copepodites were most abundant in oligohaline waters, although they were also fairly abundant in mesohaline conditions $(5\~18\;psu)$. Females with egg sacs appeared in oligo- and mesohaline waters during spring and autumn but were seldom found in polyhaline conditions throughout the year. Our results indicate that, despite the strong physical influence of the tide, Pseudodiaptomus sp. can manipulate its position to remain at its preferred salinity. We also found that spawning mainly occurred in oligohaline waters twice a year.

Effects of Climate Change on the Occurrence of Two Fly Families (Phoridae and Lauxaniidae) in Korean Forests

  • Kwon, Tae-Sung;Lee, Cheol Min;Jie, Okyoung;Kim, Sung-Soo;Jung, Sungcheol;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.71-77
    • /
    • 2021
  • Using data from flies collected with pitfall traps in 365 forests on a nationwide scale in Korea, the abundance and distribution changes of two families (Phoridae and Lauxaniidae) in Korean forests were predicted at the genus level according to two climate change scenarios: RCP 4.5 and RCP 8.5. The most suitable temperature for the 17 major genera was estimated using a weighted average regression model. Stichillus and Anevrina displayed the lowest optimum temperature with 7.6℃ and 8.5℃ in annual mean temperature, respectively, whereas Chonocephalus had the highest optimum temperature with 12.1℃. Among thirty genera, seven genera (four from Phoridae and three from Lauxaniidae), which showed their abundance in a bell-type or linear pattern along the temperature gradient, were used for predicting the distribution changes according to the future climate change scenarios. All the taxa of this study are expected to decrease in abundance and distribution as a function of temperature increase. Moreover, cold-adapted taxa were found to be more affected than warm-adapted taxa.

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.