• Title/Summary/Keyword: absorption-line

Search Result 406, Processing Time 0.026 seconds

Copper(II) Sorption Mechanism on Kaolinite : An EPR and EXAFS Study (캐올리나이트 표면에서의 구리 수착 메카니즘 : 전자상자성공명 및 EXAFS 연구)

  • Sung Pil Hyun;Kim F Hayes
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Copper(II) sorbed on kaolinite (KGa-lb) was studied using electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The sorbed copper(II) had an isotropic EPR signal with $g_{iso}\;=\;2.19$ at room temperature. At 77 K, the isotropic signal converted to an axially symmetric anisotropic signal with $g_{\$\mid$}\;=\;2.40,\;g_{\bot}\;=\;2.08,\;and\;A_{\$\mid$}\;=\;131\;G$. These EPR results suggest that the sorbed copper(II) forms an outer-sphere surface complex with a tetragonally distorted $CuO_{6}$ octahedral structure on the kaolinite. In the sorption measurement, the amount of sorbed copper increased with increasing pH of the solution. However, the intensity of the isotropic EPR line was not directly proportional to the amount of sorbed copper. This discrepancy was resolved by assuming the formation of a surface precipitate at higher pH that is invisible by EPR. The EXAFS data confirmed the existence of the surface precipitate. The best fit for the EXAFS of the sorbed copper showed that each copper on the kaolinite had 6.8 copper neighbors located $3.08\;{\AA}$ from it, in addition to the first shell oxygen neighbors, including 4 equatorial O at $1.96\;{\AA}$ and 2 axial O at $2.31\;{\AA}$. This work shows that the local environment of the copper sorbed on the kaolinite changes as a function of pH and surface loading, and that the EPR and EXAFS are useful in studying such changes.

Effects of root nodules on the plant type in soybean-Especially internode length and petiole length on the main stem

  • Ohashi, Shuma;Kurita, Haruna;Takahashi, Yukitsugu;Nagasuga, Kiyoshi;Nagaya, Yuichi;Umezaki, Teruhisa
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.358-358
    • /
    • 2017
  • The plant type is generally one of the most important factor for crop production and be influenced by nitrogen absorption. Soybean plants have nodules in their roots, supplying nitrogen at the vegetative and reproductive stages. Root nodules seem to effect plant type of soybean plants, but there are few reports on the relation nodules and plant type. We tried to clarify the effects of root nodules on the plant type, especially internode length and petiole length, comparing non-nodule soybean with normal soybean. The pot experiment and field experiment were carried out at Mie University and Utsunomiya University in 2015 and 2016. Enrei, a popular cultivar in central Japan, and En1282, non-nodulating isogenic line of Enrei, were used. The petiole length on main stem was measured after defoliation and internode length and yield components were measured after harvest. In the field experiment, the patterns of the final length in internode and petiole on main stem were consistent in both cultivars, and a positive correlation was found between the Nth petiole length and the N-1th internode length, belong to the same phytomere. Therefore, the petiole and internode on the main stem make similar response for environmental factors. In pot experiment, Enrei grew with the same pattern as field experiments, but in En1282, the elongation of petiole and internode in the upper part was suppressed, especially the petiole was suppressed greatly. The main stem becomes the basis of the plant type. These results were considered that the nitrogen is distributed preferentially to the internode than the petiole. It seems that the pot cultivation restricted the rhizosphere and caused nitrogen deficiency in En1282. These results suggested that the slight nitrogen deficiency provided from the root nodules was compensated by the increase of the amount of inorganic nitrogen absorption due to the expansion of the rhizosphere, and the severe nitrogen deficiency suppressed elongation of petiole and internode. It is clear that root nodules effect the plant type by supplying nitrogen to internodes and petioles.

  • PDF

Physical and mechanical properties of volcanic glass in the Samho area, South Korea (삼호지역에 분포하는 유리질화산암에 대한 물리적$\cdot$역학적 특성)

  • Kang Seong-Seung;Lee Heon-Jong;Kang Choo-Won;Kim Cheong-Bin
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.223-227
    • /
    • 2005
  • The physical and mechanical properties of volcanic glass, which is distributed in the Samho area, South Korea were studied. Laboratory rock tests were carried out in order to obtain the various properties of rocks. Specific gravity, water content, absorption, porosity and wave velocity were measured for the physical properties. Uniaxial and triaxial compressive tests, Brazilian test and point load test were also performed for the mechanical properties. The tests of volcanic glass revealed that the apparent specific gravity, water content and absorption were 2.28, $1.67\%$ and $1.72\%$, respectively. Porosity $(3.87\%)$ was lower, whereas P-wave velocity (5330m/s) and S-wave velocity (2980 m/s) were relatively higher. Brazilian tensile strength ot 7.2MPa, and point load strength of 2.6MPa were among the mechanical properties of the rock. Uniaxial compressive strength (62.4MPa) estimated ken point load strength was very closed to the value (66.0MPa) from the uniaxial compressive test. Young's modulus and Poisson's ratio were E=43.2 GPa and v=0.28, respectively. Drawing the tangent line to Mohr-Coulomb failure criterion showed the cohesion of 20.1MPa and internal fraction angle of $28.6^{\circ}$.

Development of SNP Molecular Markers Related to Seed-hair Characteristic Based on EST Sequences in Carrot (당근 EST 염기서열을 이용한 종자모 형질 관련 SNP 분자표지 개발)

  • Oh, Gyu-Dong;Shim, Eun-Jo;Jun, Sang-Jin;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • Carrot (Daucus carota L. var. sativa) is one of the most extensively used vegetable crops in the world and a significant source of nutrient because of its high content of ${\beta}$-carotene, well known as the precursor of vitamin A carotenoid. However, seed-hairs generated and elongated from the epidermal cell of seeds inhibit absorption and germination by various factors such as carotol and so on. Accordingly, mechanical hair removal process is essential before commercialization of carrot seeds. Because of this process, producers will have additional losses such as time consuming, manpower, capital and so on. Furthermore, physical damage of seeds causes irregular germination rate. To overcome such cumbersome weaknesses, new breeding program for developing hairless-seed carrot cultivar has been needed and studies for molecular markers related to seed-hair characteristic is needed for a new breeding program. Therefore, in this study, cDNA libraries from seeds of short-hair seed phenotype CT-SMR 616 OP 659-1 line, hairy-seed phenotype CT-SMR 616 OP 677-14 line and short-hair seed phenotype CT-ATR 615 OP 666-13 line, hairy-seed phenotype CT-ATR 615 OP 671-9 were constructed, respectively. Furthermore, 1,248 ESTs in each line, total 4,992 ESTs were sequenced. As a result, 19 SNP sites and 14 SNP sites in each of 2 combinations were confirmed by analyzing these EST sequences from short-hair and hairy-seed lines. Then we designed SNP primer sets from EST sequences of SNP sites for high resolution melting (HRM) analysis. Designed HRM primers were analyzed using hairy seed phenotype CT-SMR 616 OP 1040 line and short-hair seed phenotype CT-SMR 616 OP 1024, 1025, 1026 lines. One set of HRM primers showed specific difference between the melting curves of hairy and short-hair seed phenotype lines. Based on this result, allele-specific (AS) PCR primers were designed for easier selection between hairy-seed carrot and hairless seed carrot. These results of HRM and AS-PCR are expected to be useful in breeding of hairless seed carrot cultivar as a molecular marker.

Fabrication of Multiple-Frequency Exposure System for In Vitro Experiment (세포 실험용 다중 주파수 동시 노출 장치 제작)

  • Kim, Tae-Hong;Seo, Min-Gyeong;Mun, Ji-Yeon;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.213-219
    • /
    • 2012
  • Recently, we are simultaneously exposed by various electromagnetic sources due to an increase of mobile communication services. However, EMF(Electric, Magnetic and Electromagnetic Field) study has been performed mainly about only single frequency. The objective of this paper is to develop an multiple-frequency exposure system for in vitro experiment. The exposure unit for in vitro experiments was designed by radial transmission line type to get broadband characteristics to generate signals of CDMA at 836.5 MHz and WCDMA at 1950 MHz frequency simultaneously. The modulated signals were delivered to the conical antenna through amplifier, digital attenuator and RF combiner. SAR values were obtained by the averaged values of 3 measured values at 9 points in petri dish using the fiber optic temperature probe. The measured return loss was under -15 dB. For 1 W input power, the mean value and standard deviation of SAR were $0.105{\pm}0.019$ for the CDMA frequency and $0.262{\pm}0.055$ for the WCDMA frequency.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

A Study on the Resolution Analysis of Digital X-ray Images with increasing Thickness of PMMA (조직 등가물질 두께 증가에 따른 디지털 엑스선 영상의 해상도 분석에 관한 연구)

  • Kim, Junwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • Scattered x-ray generated by digital radiography systems also have the advantage of increasing signals, but ultimately detectability is reduced by decreasing resolution and increasing noise of x-ray images transmitted objects. An indirect method of measuring scattered x-ray in a modulation-transfer function (MTF) for evaluating resolution in a spatial-frequency domain can be considered as a drop in the MTF value corresponding to zero-frequency. In this study, polymethyl methacrylate (PMMA) was used as a patient tissue equivalent, and MTFs were obtained for various thicknesses to quantify the effect of scattered x-ray on resolution. X-ray image signals were observed to decrease by 35 ~ 83% with PMMA thickness increasing, which is determined by the absorption or scattering of x-rays in PMMA, resulting in reduced MTF and increased scatter fraction. The method to compensate for MTF degradation by PMMA resulted in the MTF inflation without considering the optical spreading generated by the indirect-conversion type detector. Data fitting or zero-padding are needed to compensate for MTF more reasonably on edge-spread function or line-spread function.

Electrical and Optical Properties for TCO/Si Junction of EWT Solar Cells (TCO/Si 접합 EWT 태양전지에 관한 전기적 및 광학적 특성)

  • Song, Jinseob;Yang, Jungyup;Lee, Junseok;Hong, Jinpyo;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this work we have investigated electrical and optical properties of interface for ITO/Si with shallow doped emitter. The ITO is prepared by DC magnetron sputter on p-type monocrystalline silicon substrate. As an experimental result, The transmittance at 640nm spectra is obtained an average transmittance over 85% in the visible range of the optical spectrum. The energy bandgap of ITO at oxygen flow from 0% to 4% obtained between 3.57eV and 3.68eV (ITO : 3.75eV). The energy bandgap of ITO is depending on the thickness, sturcture and doping concentration. Because the bandgap and position of absorption edge for degenerated semiconductor oxide are determined by two competing mechanism; i) bandgap narrowing due to electron-electron and electron-impurity effects on the valance and conduction bands (> 3.38eV), ii) bandgap widening by the Burstein-Moss effect, a blocking of the lowest states of the conduction band by excess electrons( < 4.15eV). The resistivity of ITO layer obtained about $6{\times}10^{-4}{\Omega}cm$ at 4% of oxygen flow. In case of decrease resistivity of ITO, the carrier concentration and carrier mobility of ITO film will be increased. The contact resistance of ITO/Si with shallow doped emitter was measured by the transmission line method(TLM). As an experimental result, the contact resistance was obtained $0.0705{\Omega}cm^2$ at 2% oxygen flow. It is formed ohmic-contact of interface ITO/Si substrate. The emitter series resistance of ITO/Si with shallow doped emitter was obtained $0.1821{\Omega}cm^2$. Therefore, As an PC1D simulation result, the fill factor of EWT solar cell obtained above 80%. The details will be presented in conference.

  • PDF