• Title/Summary/Keyword: absorbed dose

Search Result 563, Processing Time 0.023 seconds

Measuring Absorbed Dose from Medical X-ray Equipment Using Optically Stimulated Luminescence Dots (광자극선량계의 저에너지 엑스선 특성비교)

  • Jung, Sook Jin;Jin, Gye Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.79-83
    • /
    • 2018
  • In this paper, we measured and analyzed the dose correction factor, absorbed dose linearity, peak voltage X-ray response, angular dependence. Exposure dose correction factor, absorbed dose linearity, and peak voltage linearity using the medical X-ray generator were all in accordance with IEC-62387-1 (2007). The reference to the dosimetry direction at 0, 30, and 60 degrees relative to baseline radiation exposure was -29% (${\pm}30^{\circ}$) and + 67% (${\pm}60^{\circ}$). The values measured at $30^{\circ}$ were -8% lower than the standard and -18% lower than the standard at $60^{\circ}$. Therefore, the effect of direction should be corrected when using OSL dot dosimeter.

Determination of Dose Distribution under Nonequivalent Condition by Prosthesis in Radiotherapy (방사선 치료시 인공고관절 삽입에 의한 불균질면에서의 선량분포 평가)

  • Lee, Joon-Il;Kim, Sung-Hwan
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.43-46
    • /
    • 1998
  • When a patient was irradiated with prosthetic hip, the dose distribution was changed according to inhomogeneous materials. The density, effective atomic number, and the composition of material had influence on absorbed dose distribution. In this study, the influence of inhomogeneous material(Ti) was measured using a polyethylene phantom, which consisted of various diameter of titanium, with film dosimetry. As a result, the backward dose showed 29.5% increas by backscattering, the forward dose showed 28% decreas by absorption, and the side dose showed 7% increas by scattering, when 25 mm diameter Ti was used. In addition forward dose was in inverse proportion to the thickness of prosthetic material. When the prosthetic hip of patient is in an irradiated field, we must carefully study the absorbed dose distribution.

  • PDF

A Study on Dose Sensitivity according to Position Variance in Extremities Radiation Therapy with Water Bolus (사지의 방사선 치료에 사용하는 water bolus의 적용 시 치료부위의 위치 변화에 따른 방사선 선량분포의 민감도 연구)

  • Seo, Jeong Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.199-206
    • /
    • 2015
  • The purpose of this study was to investigate radiation dose sensitivity due to displacement of human extremities in the water bolus box on radiation therapy. Water bolus box and human thigh with femur bone were constructed in computerized radiation therapy planning system to verify the absorbed dose. Two 6MV X-ray beams were irradiated bilaterally into water bolus box and then radiation dose were calculated each situation at displacement of middle axis of thigh from the center in water bolus box to right and left direction. Absorbed dose of thigh and femur bone increased by the distance of displacement. The maximum dose of thigh even increased 20% over than prescribed dose. This is in contrast to conventional concept of dose distribution in water bolus box. Based on this result, displacement of body site in the water bolus box have to be averted during radiation therapy.

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

Image-based Absorbed Dosimetry of Radioisotope (영상기반 방사성동위원소 흡수선량 평가)

  • Park, Yong Sung;Lee, Yong Jin;Kim, Wook;Ji, Young Hoon;Kim, Kum Bae;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2016
  • An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.

Chamber to Chamber Variations of a Cylindrical Ionization Chamber for the Calibration of an $^{192}Ir$ Brachytherapy Source Based on an Absorbed Dose to Water Standards (물흡수선량 표준에 기반한 $^{192}Ir$ 근접치료 선원 교정 시 원통형 이온함의 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Chan-Hyeong;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • This work is for the preliminary study for the calibration of an $^{192}Ir$ brachytherapy source based on an absorbed dose to water standards. In order to calibrate brachytherapy sources based on absorbed dose to water standards using a clyndirical ionization chamber, the beam quality correction factor $k_{Q,Q_0}$ is needed. In this study $k_{Q,Q_0}s$ were determined by both Monte carlo simulation and semiexperimental methods because of the realistic difficulties to use primary standards to measure an absolute dose at a specified distance. The 5 different serial numbers of the PTW30013 chamber type were selected for this study. While chamber to chamber variations ran up to maximum 4.0% with the generic $k^{gen}_{Q,Q_0}$, the chamber to chamber variations were within a maximum deviation of 0.5% with the individual $k^{ind}_{Q,Q_0}$. The results show why and how important ionization chambers must be calibrated individually for the calibration of $^{192}Ir$ brachytherapy sources based on absorbed dose to water standards. We hope that in the near future users will be able to calibrate the brachytherapy sources in terms of an absorbed dose to water, the quantity of interest in the treatment, instead of an air kerma strength just as the calibration in the high energy photon and electron beam.

  • PDF

A Study on the Usefulness of Glass Dosimeter in the Evaluation of Absorbed Dose by Comparing the Doses of Multi-purpose Dosimeter and Glass Dosimeter Using Kerma with PCXMC 2.0 in DR(Digital Radiography) (DR(Digital Radiography)에서 PCXMC 2.0을 이용한 Kerma와 다목적 선량계, 유리선량계의 선량비교를 통한 흡수선량 평가 시 유리선량계의 유용성에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.292-299
    • /
    • 2017
  • Radiation protection aims to prevent a deterministic effect and minimize a stochastic effect. Overestimating a deterministic effect and a stochastic effect can result in an inaccurate assessment of the risks that will occur in the future, and thus accurate evaluation of the absorbed dose of these fundamental amounts is especially important. This study was intended to measure Kerma using PCXMC 2.0 based on Monte Carlo simulations and to assess the exact absorbed dose by comparing doses produced using multipurpose dosimeter and glass dosimeter. It has been decided to conduct experiments for skull, abdomen and pelvis, and Kerma measured PCXMC 2.0 based on Monte Carlo simulations. The absorbed dose was measured using muli purpose dosimeter and glass dosimeter. The results for the experiments conducted in skull, abdomen, pelvis show that the difference in dose appears great in the order of PCXMC 2.0, muli purpose dosimeter, and the glass dosimeter, and muli purpose dosimeter showed a value closer to that of Kerma. As a result, it has been found that the glass dosimeter was the most advantageous in measuring the actual absorbed dose.

Analysis of Absorbed Dose on the Nucleus Size Change of Single Cells using Therapeutic Radioisotopes (치료용 방사성동위원소 사용 시 단일 세포의 핵 크기 변화에 따른 흡수선량 분석)

  • Uoo-Soo, Kim;Yong-In, Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.1007-1014
    • /
    • 2022
  • Targeted radionuclide therapy (TRT) is a method of treating tumor cells using radiopharmaceuticals. Cells and nuclei constituting tissues of the human body are composed of spherical and oval shapes, but cancer cells are composed of various cell types. Therefore, this study analyzed the absorbed dose for each organelle according to the change in the size of the cell nucleus for beta-emitting nuclides during targeted radionuclide therapy through the Monte Carlo method. Cells were set in two sphere shapes, 5 ㎛ and 10 ㎛, and the internal structure was divided into cell nucleus, cytoplasm, and cell surface. Next, the absorbed dose according to the increase in the size of the cell nucleus was evaluated. As a result, 177Lu among the target radionuclides showed the highest dose in all cell compartments. As the ratio of the nucleus in the cell increased, the absorbed dose on the cell surface increased, but the absorbed dose in the cytoplasm and nucleus tended to decrease. Accordingly, it is judged that it is important to select a radionuclide considering the size of cancer cells and determine an appropriate amount of radioactivity during targeted radionuclide treatment.

Development of a Dose Calibration Program Based on an Absorbed Dose-to-Water Standard (물 흡수선량 표준에 기반한 선량교정 프로그램 개발)

  • 신동오;김성훈;박성용;서원섭;이창건;최진호;전하정;안희경;강진오
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.175-183
    • /
    • 2003
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma (or exposure) calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to the uncertainty of the physical parameters used. Recently, the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocols(IAEA TRS-398 and AAPM TG-51). The dose calibration programs for these two protocols were developed. This program for high energy photon and electron beams was also developed for users to use in a window environment using the Visual C++ language. The formalism and physical parameters of these two protocols were strictly applied to the program. The tables and graphs of the physical data, and the information of ion chambers were numericalized for their incorporation into a database. This program can be useful in developing new dosimetry protocols in Korea.

  • PDF

Radiation Dose Calculation using MIRD TYPE PHANTOM in the Surrounding Organs during Brachytherapy of Breast Cancer (유방암의 근접치료 시 수학적 모의피폭체를 이용한 인접장기의 선량평가)

  • Park, Eun-tae;Kim, Jung-hoon;Im, In-chul
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • This study was fulfilled to evaluate the absorbed dose of breast and adjacent organs using MIRD type phantom in brachytherapy of breast cancer. The absorbed dose was analyzed assuming left or right breast is source organ which is $^{103}Pd$ or $^{192}Ir$. As a result, $^{192}Ir$ dose is higher than $^{103}Pd$ in source organ and also in contralateral breast. Particularly, significant adjacent organs are lung, liver, heart and contralateral breast in brachytherapy of breast cancer.