• Title/Summary/Keyword: absolute viscosity

Search Result 23, Processing Time 0.026 seconds

Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives (고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성)

  • Kong, H.;Ossia, C.V.;Han, H.G.
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.

A Study on the Abnormal Behavior of the Viscosity near the Critical Point

  • Kim, Won-Soo;Pak, Hyung-Suk;Chair, Tong-Seek
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.372-374
    • /
    • 1989
  • The new viscosity theory is applied to the abnormal behavior of the viscosity near the critical point. This theory suggests that the viscosity is equal to the product of the absolute pressure(kinetic pressure + internal pressure) and the collision time. We can find this abnormal behavior to be due to the large collision time near the critical point. The agreements between theoriticals and experimentals of the critical enhancement are satisfactory.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

Physical Properties and Low Temperature Resistance of Recycled Binder (재생 아스팔트 바인더의 물리적 특성과 저온균열 저항성 연구)

  • Lee, Young-Gwan;Kim, J.E.;Do, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.1-12
    • /
    • 2004
  • This study evaluated the asphalt binder characteristics for the hot-recycled asphalt mixture in which RAP was added in ambient temperature for surface course as well as for base course. RAPs were collected from four sources and their physical properties were evaluated. Mix designs were performed using 10 and 20% RAP contents for surface courses and 10, 20 and 30% for base courses. A virgin asphalt with the penetration grade of 60-80 was used for mixing recycled mixtures. Physical properties of recycled binders, including penetration, absolute viscosity, GPC, BBR and penetration after TFO were measured. From the results, regression analysis of absolute viscosity versus LMS in GPC showed $R^2$ being over 0.95, showing that GPC results estimate the absolute viscosity with relative accuracy. In BBR test, the resistance of recycled mixtures at low service temperature was inferior to the control, because the low temperature PG of recycled binder was one grade higher than that of the control binder.

  • PDF

Change of Physical Properties of Binder Extracted from after Artificial Aging of Asphalt Concretes (아스팔트 콘크리트의 노화 후 추출한 바인더의 물리적 특성 변화)

  • Kim, Kwang-Woo;Doh, Young-Soo;Kim, Sung-Woon
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.53-66
    • /
    • 2002
  • Asphalt binder characteristics in asphalt mixture are changed due to aging. However. depending upon aggregate and binder used, asphalt mixture dose not show the same level of stiffness and brittleness under the same ageing level. The factors affecting Physical Properties change of the asphalt binder within aged asphalt concrete are not well known and there is limited study which is dealing with this topic This study dealt with evaluation of physical properties of asphalt binder recovered from the mixtures after short-term and long-term aging. Two asphalts. two aggregates. two gradations and four polymers were used to make 32 mixture combinations. The mixtures were prepared and aged artificially in a forced draft oven. The measured physical properties included absolute viscosity, kinematic viscosity and penetration. Statistical analyses were carried out to find out the factor(s) having a significant effect on change of physical property of asphalt binder due to asphalt mixture aging. The results of study shown that aggregate, gradation and polymer had a significant effect on change of physical properties of asphalt binder.

  • PDF

A Study on the Effect of Organic Permeant on Permeability of a Natural Clay (유기투과물이 자연점토의 투수성에 미치는 영향에 대한 연구)

  • 전상옥;장병우;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.98-105
    • /
    • 1997
  • Compacted clay materials are often used to form barriers for waste disposal by means of landfill. The performance of clay barrier depends on its permeability characteristics under the site environments. The study discusses permeability characteristics of 4 types of permeants through a compacted clayey soil. Permeabilities are measured using the modified rigid-wall permeater and with water, PEG, Ethanol, and TCE, ranging 80 to 3.4 of dielectric constants. Results of the study are as follows : 1) Absolute permeabilities of Ethanol and TCE that their dielectric constants are lower than that of water are $K=1.0{\times} 10^{-12} cm^2$, and $5.8{\times} 10^{-12} cm^2$, respectively, that is, 1.67, and 9.67 times of permeability of water, respectively. Absolute permeability and dielectric constant of water are $K=6{\times} 10^{-13} cm^2$, and 80, respectively. 2) Changes in absolute permeability of Ethanol and TCE converge to a constant after 3.5 pore volume of permeant flows through the clay sample. This can be explained that diffuse double layer of clay is no longer reacted with permeants and contracted their pores. However there is no change in absolute permeability when water is used as a per-meant. 3) It is found that absolute permeability in reversely proportional to the value of dielectric constant of the permeants. Change in absolute permeability of the permeants with 40 or over of dielectric constant is not significant. However change in absolute permeability of the permeant with 30 or lower dielectric constant is abruptly increased. 4) A lower absolute permeability of PEG is found because of its high viscosity.

  • PDF

Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles (카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성)

  • Park, Moon-Soo;Moon, Ji-Yeon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

Analysis of Empirical Constant of Eddy Viscosity by Zero- and One-Equation Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Kim, Tae Yun;Lee, Moon Ock;Hwang, Sung Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.323-333
    • /
    • 2014
  • In this paper, the wakes behind a square cylinder were simulated using two kinds of different turbulence models for the eddy viscosity concept such as the zero- and the one-equation model in which the former is the mixing length model and the latter is the k-equation model. For comparison between numerical and analytical solutions, we employed three skill assessments: the correlation coefficient(r) for the similarity of the wake shape, the error of maximum velocity difference(EMVD) for the accuracy of wake velocity and the ratio of drag coefficient(RDC) for the pressure distribution around the structure. On the basis of the numerical results, the feasibility of each model for wake simulation was discussed and a suitable value for the empirical constant was suggested in these turbulence models. The zero-equation model, known as the simplest turbulence model, overestimated the EMVD and its absolute mean error(AME) for r, EMVD and RDC was ranging from 20.3 % to 56.3 % for all test. But the AME by the one-equation model was ranging from 3.4 % to 19.9 %. The predicted values of the one-equation model substantially agreed with the analytical solutions at the empirical mixing length scale $L=0.6b_{1/2}$ with the AME of 3.4 %. Therefore it was concluded that the one-equation model was suitable for the wake simulation behind a square cylinder when the empirical constant for eddy viscosity would be properly chosen.

Copolyrnerization of Acrylamide with Styrene (Acrylamide와 Styrene의 共重合에 關한 硏究)

  • Chung, Ki-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.333-339
    • /
    • 1970
  • 1) The copolymerzation of acrylamide $(M_1)$ with styrene $(M_1)$ was studied in absolute methanol solution at $50^{\circ}C$, using azobisisobutyronitrile as a initiator. The monomer reactivity ratios determined at $50^{\circ}C$ were as follows: $r_1=0.2,\;r_2=1.05$ and from these values, Q and e values for acrylamide were calculated as 0.37$(Q_1)$ and 0.45 $(e_1)$. 2) Overall activation energy of copolymer was calculated to 24.3K/cal mol, using the Arrhenius epuation. 3) Measurement of intrinsic viscosity and observation of physical properties were made on the copolymer.

  • PDF