• Title/Summary/Keyword: absolute positioning

Search Result 120, Processing Time 0.036 seconds

The Design and Analysis of Recognition Structure for Absolute Train Positioning System of High-speed Maglev Train System (초고속자기부상열차 절대위치검지시스템 인식구조 설계 및 분석)

  • Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho;Lee, Kang-Mi
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.116-120
    • /
    • 2011
  • For the train positioning system currently applied in high-speed MAGLEV train systems, it is classified into absolute positioning systems which discontinuously detect train positions, and relative positioning systems which continuously detect train positions. In this paper we analyze the configuration model and the numerical model of the absolute positioning system applied in TRANSRAPID which is a representative high-speed MAGLEV train, and design the two configuration models specific to the recognition structures of absolute positioning systems. We also verify the compatibility of the design models of absolute positioning system through simulation using MATLAB and propose the optimal configuration model of absolute positioning systems for high-speed MAGLEV train system.

Absolute Positioning System of Mobile Robot using Light Navigation Path (광궤도를 이용한 이동로봇의 절대위치 보정 시스템)

  • 박용택;정효용;국금환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.141-147
    • /
    • 2003
  • This paper represents an absolute positioning system using a light navigation path for mobile robot. The absolute positioning system is composed of the projector unit which generates a laser beam using laser diode and mobile robot with the optical detector which has some optical sensors. The projector unit is fixed over the navigating plane of mobile robot to generate the light navigation path, and the optical detector located upper part of mobile robot detects the generated laser beam from the projector. The navigation of mobile robot is controlled by the micro-processor which compares the detected present position from the detector with the previously programmed navigation path. And experimental results show that our sensor system can be used for the absolute positioning system of the mobile robot.

The Study on Analysis of Absolute Train Positioning System for Maglev System (자기부상철도의 절대위치검지시스템 구조 분석 연구)

  • Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1179_1180
    • /
    • 2009
  • In the maglev system, accurate train position is essential for safe and efficient train operation. Train positioning systems in the maglev systems are different from conventional railway system because railway train has no wheels. And various train positioning principles and systems have been used in maglev systems. In this paper, we study several positioning principles and systems on adapting existing various maglev systems and analyze functional structure of absolute positioning system in ultra high speed maglev system. Then we propose development scheme on absolute positioning system for developing ultra high speed maglev system.

  • PDF

Indoor Positioning System using Incident Angle Detection of Infrared sensor (적외선 센서의 입사각을 이용한 실내 위치인식 시스템)

  • Kim, Su-Yong;Choi, Ju-Yong;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.991-996
    • /
    • 2010
  • In this paper, a new indoor positioning system based on incident angle measurement of infrared sensor has been suggested. Though there have been various researches on indoor positioning systems using vision sensor or ultrasonic sensor, they have not only advantages, but also disadvantages. In a new positioning system, there are three infrared emitters on fixed known positions. An incident angle sensor measures the angle differences between each two emitters. Mathematical problems to determine the position with angle differences and position information of emitters has been solved. Simulations and experiments have been implemented to show the performance of this new positioning system. The results of simulation were good. Since there existed problems of noise and signal conditioning, the experimented has been implemented in limited area. But the results were acceptable. This new positioning method can be applied to any indoor systems that need absolute position information.

Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation (실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구)

  • Ahn, Jae-Wan;Jin, Ji-Yong;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

Times Series Analysis of GPS Receiver Clock Errors to Improve the Absolute Positioning Accuracy

  • Bae, Tae-Suk;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.537-543
    • /
    • 2007
  • Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.

An Error Analysis of GPS Positioning (GPS를 이용한 위치 결정에서의 오차 해석)

  • Park, Chansik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.550-557
    • /
    • 2001
  • There are several applications and error analysis methods using GPS(Global Positioning System) In most analysis positioning and timing errors are represented as the multiplication of DOP(Dilution Of Precision) and measurement errors, which are affected by the receiver and measurement type. Therefore, lots of DOPs are defined and used to analyze and predict the performance of positioning and timing systems. In this paper, the relationships between these DOPs are investigated in detail, The relationships between GDOP(Geometric DOP), PDOP(Position DOP) and TDOP(Time DOP) in the absolute positioning are de-rived. Using these relationships, the affect of clock bias is analyzed. The relationships between RGDOP(Relative DOP) and PDOP are also derived in relative positioning where the single difference and double dif-ference techniques are used. From the results, it is expected that using the common clock will give better performance when the single difference technique is used while the effects of clock is eliminate when the double difference technique is used. Finally, the error analyses of dual frequency receivers show that the narrow lane measurements give more accurate results than wide line of or L1. L2 independent measurements.

  • PDF

Robot performance test and calibration systme (로보트 성능측정 및 Calibration 시스템)

  • 김문상;유형석;장현상;허재범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.596-601
    • /
    • 1990
  • When using robot manipulator to carry out autonomous tasks, the positioning accuracy of the robot manipulator relative to a reference coordinate frame is of greate importance. The task program, which is generated by off-line CAD-system and used in actual robot positioning, may cause serious amount of the absolute positioning error of the robot manipulator. In this study, a robot performance test and calibration algorithms are proposed in order to improve the absolute positioning accuracy of the robot end effector. Experiments were also carried out by utilizing the HYUNDAI Robot AE 7601 and KIM2-Tester, a three dimensional measurement system, which is developed in Robotics & Fluid Power Control Lab. at Korea Institute of Science and Technology.

  • PDF

A Study on a 3D Free-Hand using Ultrasonic Position System

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.451-454
    • /
    • 2006
  • Ultrasonic Positioning System (UPS) is an absolute positioning system using ultrasonic waves and has better performance in low price than the other absolute positioning systems. UPS can be further used as pseudo-satellites in the place where GPS is not available. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The process includes the design and testing of VPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

  • PDF