• Title/Summary/Keyword: absolute model accuracy

Search Result 267, Processing Time 0.026 seconds

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.

A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram (Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘)

  • Song, Y.R.;Kim, S.J.;Jeong, E.C.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • In this paper, we propose the gaussian mixture model based pattern classification algorithm of forearm electromyogram. We define the motion of 1-degree of freedom as holding and unfolding hand considering a daily life for patient with prosthetic hand. For the extraction of precise features from the EMG signals, we use the difference absolute mean value(DAMV) and the mean absolute value(MAV) to consider amplitude characteristic of EMG signals. We also propose the D_DAMV and D_MAV in order to classify the amplitude characteristic of EMG signals more precisely. In this paper, we implemented a test targeting four adult male and identified the accuracy of EMG pattern classification of two motions which are holding and unfolding hand.

MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

  • Ran Tian;Bo Wang;Chu Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.528-550
    • /
    • 2024
  • Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.

Hourly Water Level Simulation in Tancheon River Using an LSTM (LSTM을 이용한 탄천에서의 시간별 하천수위 모의)

  • Park, Chang Eon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

Accuracy Analysis of Ocean Tide Loading Constituent Detection Using GNSS Positioning (GNSS 측위방법에 따른 해양조석하중 성분 검출 정확도 분석)

  • Yoon, Ha Su;Choi, Yun Soo;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • Various space geodetic techniques have been developed for highly precise and cost-efficient positioning solutions. By correcting the physical phenomena near the earth’s surface, the positioning accuracy can be further improved. In this study, the vertical crustal deformation induced by the ocean tide loading was accurately estimated through GNSS absolute and relative positioning, respectively, and the tidal constituents of the results were then analyzed. In order to validate the processing accuracy, we calculated the amplitude of eight major tidal constituents from the results and compared them to the global ocean tide loading model FES2004. The experimental results showed that absolute positioning and positioning done every hour during the observation time of 2 hours, which yielded an outcome similar to the reference ocean tide loading model, were better approaches for extracting tide constituents than relative positioning. As a future study, a long-term GNSS data processing will be required in order to conduct more comprehensive analysis including an extended tidal component analysis.

Lightweight Deep Learning Model for Heart Rate Estimation from Facial Videos (얼굴 영상 기반의 심박수 추정을 위한 딥러닝 모델의 경량화 기법)

  • Gyutae Hwang;Myeonggeun Park;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2023
  • This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.

Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model (기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측)

  • Nguyen Thi Phuong Thanh;Gyu Sung Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Container volume is a very important factor in accurate evaluation of port performance, and accurate prediction of effective port development and operation strategies is essential. However, it is difficult to improve the accuracy of container volume prediction due to rapid changes in the marine industry. To solve this problem, it is necessary to analyze the impact on port performance using the Internet of Things (IoT) and apply it to improve the competitiveness and efficiency of Busan Port. Therefore, this study aims to develop a prediction model for predicting the future container volume of Busan Port, and through this, focuses on improving port productivity and making improved decision-making by port management agencies. In order to predict port container volume, this study introduced the Extreme Gradient Boosting (XGBoost) technique of a machine learning model. XGBoost stands out of its higher accuracy, faster learning and prediction than other algorithms, preventing overfitting, along with providing Feature Importance. Especially, XGBoost can be used directly for regression predictive modelling, which helps improve the accuracy of the volume prediction model presented in previous studies. Through this, this study can accurately and reliably predict container volume by the proposed method with a 4.3% MAPE (Mean absolute percentage error) value, highlighting its high forecasting accuracy. It is believed that the accuracy of Busan container volume can be increased through the methodology presented in this study.

Solar Power Generation Forecast Model Using Seasonal ARIMA (SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축)

  • Lee, Dong-Hyun;Jung, Ahyun;Kim, Jin-Young;Kim, Chang Ki;Kim, Hyun-Goo;Lee, Yung-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea (남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석)

  • Huang, He;Yun, Hong Sic;Lee, Dong Ha;Jeong, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.161-166
    • /
    • 2009
  • High-resolution, high-precision ultra-high degree earth gravitational model are significant for the development of geodesy, geophysics, geodynamics and oceanography. In this research, we introduces the ultra-high earth gravitational model EGM2008 recently announced by U.S. NGA, reviews the issues and status of the ultra-high degree gravitational model development, and analyzes the accuracy of the gravitational model in Korea. First, EGM2008 is compared with the gravitational model EGM96 and Korea high-precision hybrid geoid model KGEOID08. In addition, the absolute accuracy is evaluated by ellipsoid height and orthometric height of a satellite geodetic reference point. Overall, the results show a similar accuracy between EGM2008 and KGEOID08. Thus, EGM2008 will be helpful for the future development of regional geoid and analysis of global gravity field.

A revised Hermite peak factor model for non-Gaussian wind pressures on high-rise buildings and comparison of methods

  • Dongmei Huang;Hongling Xie;Qiusheng Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • To better estimate the non-Gaussian extreme wind pressures for high-rise buildings, a data-driven revised Hermitetype peak factor estimation model is proposed in this papar. Subsequently, a comparative study on three types of methods, such as Hermite-type models, short-time estimate Gumbel method (STE), and new translated-peak-process method (TPP) is carried out. The investigations show that the proposed Hermite-type peak factor has better accuracy and applicability than the other Hermite-type models, and its absolute accuracy is slightly inferior to the STE and new TPP methods for non-Gaussian wind pressures by comparing with the observed values. Moreover, these methods generally overestimate the Gaussian wind pressures especially the STE.