• Title/Summary/Keyword: absolute coordinate

Search Result 120, Processing Time 0.02 seconds

A Study on Multilayer Routing Problem by CAD system (CAD 시스템을 사용한 다층 Routing 문제에 관한 연구)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.543-549
    • /
    • 1986
  • A topologically based interconnection routing of multilayer printed circuit boards has been proposed. This study focuses on modeling the relative positioning of the interconnect paths rather than absolute positioning within a fixed coordinate system, thereby avoiding simplifications that impose restrictin on the path shapes.

  • PDF

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.

Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device (광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법)

  • Kim, Jeong-ho;Lee, Dae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with a method of aligning an aircraft fuselage and an inertial navigation sensor using three-dimensional coordinates obtained by an optical method. In order to verify the feasibility, we introduce the method to accurately align the coordinate system of the inertial navigation sensor and the aircraft reference coordinate system. It is verified through simulation that reflects the error level of the measuring device. In addition, optimization method based alignment algorithm is proposed for connection between optical sensor and inertial navigation sensor.

Development of a computer mouse using gyro-sensors and LEDs (자이로 센서와 LED를 이용한 마우스 개발)

  • Park, Min-Je;Kang, Shin-Wook;Kim, Soo-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.701-706
    • /
    • 2009
  • We proposed the device to control a computer with only a head and eye blinks so that disabilities by car accidents can use a computer. Because they have paralysis of their upper extremities such as C4~C5 paraplegics and cerebral palsy, they cannot efficiently access a general keyboard/mouse not using hands and foots. The cursor position was estimated from a gyro-sensor which can measure head movements, and the mouse event such as click/double click from opto-sensors which can detect eye blinks. The sensor was put on the proper goggle in order not to disturb the visual field. The performance of the proposed device was compared to a general optical mouse, and was used both relative and absolute coordinate in cursor positioning control. The recognition rate of click and double-click was 86% of the optical mouse, the speed of cursor movement by the proposed device was not much different from the mouse. The overall accuracy was 80%. Especially, the relative coordinate is more convenience and accuracy than the absolute coordinate, and can reduce the frequency of reset to prevent the accumulative error.

  • PDF

Positioning Method Using a Vehicular Black-Box Camera and a 2D Barcode in an Indoor Parking Lot (스마트폰 카메라와 2차원 바코드를 이용한 실내 주차장 내 측위 방법)

  • Song, Jihyun;Lee, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • GPS is not able to be used for indoor positioning and currently most of techniques emerging to overcome the limit of GPS utilize private wireless networks. However, these methods require high costs for installation and maintenance, and they are inappropriate to be used in the place where precise positioning is needed as in indoor parking lots. This paper proposes a vehicular indoor positioning method based on QR-code recognition. The method gets an absolute coordinate through QR-code scanning, and obtain the location (an relative coordinate) of a black-box camera using the tilt and roll angle correction through affine transformation, scale transformation, and trigonometric function. Using these information of an absolute coordinate and an relative one, the precise position of a car is estimated. As a result, average error of 13.79cm is achieved and it corresponds to just 27.6% error rate in contrast to 50cm error of the recent technique based on wireless networks.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

Positioning Accuracy Improvement of Robots by Link Parameter Calibration (링크인자 보정에 의한 로보트 위치 정밀도 개선)

  • Cho, Eui-Chung;Ha, Young-Kyun;Lee, Sang-Jo;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.32-45
    • /
    • 1989
  • The positioning accuracy of robots depends upon a forward kinematics which relates the joint variables to the orientation and position of the robot extremity in the absolute coordinate system. The relationship between two connective joint coordi- nates of a robot, which is the basis of the kinematics, is defined by 4 Denavit-Hartenberg parameters. But manufacturing errors in machining and assembly process of robots lead to disctrepancies between the design parameters and the physical structure. Thus, improving the positioning accuracy of robots reguires the identification of the actual link parameters of each robot. In this study, the least-squares method is used to calibrate the link parameters and off-line parameter calibration software is developed. Computer simulation is done to study the dependence of the calibration performance upon the DOF of the robot and number of acquired data set used in the least-squares method. 3 DOF Robot/Controller and specially designed 3D coordinate measurer is made and experiment is carried out to verify the theoretical and computational analysis.

  • PDF