• Title/Summary/Keyword: abrasives

Search Result 192, Processing Time 0.028 seconds

The Effect of Abrasive Particles on the Frictional Properties of Automotive Brake Friction Materials (자동차용 마찰재의 연마재가 마찰특성에 미치는 영향)

  • Jang, Ho;Lee, Eun-Ju;Cho, Keun-Hyung
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • The frictional properties of automotive brake pads with four different ceramic materials such as magnesia, hematite, alumina, and zircon were investigated. A Krauss type friction tester using gray iron disks was used to examine the friction coefficient, intensity of friction force oscillation, and the tribe-surfaces. Results showed that the friction coefficient increased as the hardness of abrasives increases. Friction oscillation was also increased with hardness of the abrasives. However, the friction materials containing less abrasive particles produced stable friction films on the sliding surface. The transition between two-body and three body abrasion during sliding also played a crucial role in destructing the friction film on the pad surface and in determining various frictional properties.

Development of 3 dimensional Automatic Polishing System (3차원 자동 연마장치의 개발)

  • ;;;Isao Shibata
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.314-318
    • /
    • 2002
  • Recently, new polishing tool which was made by magnetic intelligent compound(Magic) was invented. The distribution of abrasives in this new tool can be controlled by magnetic field. Therefore, we can make a special polishing tool which has well arranged abrasives after cooling. In this study, 3 dimensional polishing machine was developed in order to polish complicated - shaped inner surfaces of molds. The performance of developed machine was investigated by measuring the roughness of polished surface using new polishing tool.

  • PDF

Magnetorheological Finishing (자성유체를 이용한 연마)

  • 신영재;이응숙;황경현;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.775-778
    • /
    • 2000
  • Magnetorheological Finishing(MRF) is a newly developed and recently commercialized for finishing optical components. The magnetorheological fluid consists of a water based suspension of carbonyl iron, nonmagnetic polishing abrasives, and small amounts of stabilizer. Theoretical analysis of MRF, based on Bingham lubrication theory, is illustrated and a correlation between surface shear stress on the workpiece and material removal is obtained.

  • PDF

Performance analysis of sand abrasives for economical rock cutting using waterjet (경제적인 워터젯 암반절삭을 위한 모래 연마재 성능 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Kong, Tae-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.763-778
    • /
    • 2019
  • Abrasive waterjet cutting technology has been used for rock excavation of tunnels and underground structures due to various advantages. In order to cut rocks by using the abrasive waterjet system, abrasive is essential to enhance impact energies for fracturing the target rock. Since garnet abrasives are not produced in Korea, alternative abrasives, instead of garnets, are needed to achieve the economical waterjet cutting. This study is to analyze cutting performance for rocks with sandy particles as alternative abrasive. Cutting tests were carried out on granite specimens at the constant waterjet energy (e.g., water pressure or water flow rate). The five kinds of sands, sampled by construction fields and natural sites, were prepared to perform the experimental tests. When sea sand was used as an alternative abrasive, cutting performance was secured to be 60~70% compared to the commercial garnet abrasive. Thus, it is expected that sand abrasives can be applied on the waterjet cutting process for the economical excavation construction.

Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process (와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kim, Hyoung-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.

Study on the Abrasive Capsulation Pad in Interlayer Dielectric Chemical Mechanical Polishing (층간절연막 화학기계연마에서 입자코팅패드에 관한 연구)

  • Kim, Ho-Yun;Park, Jae-Hong;Jeong, Hae-Do;Seo, Hyeon-Deok;Nam, Cheol-U;Lee, Sang-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.168-173
    • /
    • 2001
  • The chemical mechanical polishing (CMP) is generally consisted of pad, slurry including abrasives and so on. However, there are some problems in a general CMP: defects, a high Cost of Consumable (CoC), an environmental problem. The slurry including abrasives especially gives rise to not only increase a CoC, but also prohibition from achieving an eco-process. This paper introduces an abrasive capsulation pad to achieve an eco-process decreasing abrasives used is CMP. The binder wth a water a water swelling and a water soluble characteristic is used for an auto-conditioning, and the $CeO_2$abrasive is selected for an abrasive capsulation pad. Comparing with a conventional CMP, an abrasive capsulation pad appears good characteristics in ILD CMP and is able to achieve an eco-process decreasing wasted slurry.

  • PDF

An Experimental Study on the Ultrasonic Machining Characteristics of Engineering Ceramics

  • Kang Ik Soo;Kim Jeong Suk;Seo Yong Wie;Kim Jeon Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.227-233
    • /
    • 2006
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina $(Al_2O_3)$ was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of $2.5kg/cm^2$, maximum material removal rate of $18.97mm^3/min$ was achieved. With mesh number of 600 SiC abrasives and static pressure of $3.0kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

Ultrasonic Deburring of the Thin Plate (초음파가공에 의한 박판 버 제거기술)

  • Jung, Yean-Taek;Shin, Yong-Ju;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.37-42
    • /
    • 2002
  • The shearing process for the sheet metal is normally used in the precision elements such as a frame of TFT-LCD or lead frame of IC chips. In these precision elements, the burr formation prevents the system assembly and needs the additional burr removing process. In this study, we have developed the novel ultrasonic deburring system to remove the small burr came from shearing of the sheet metal effectively. The deburring tool is driven by the stepping motor and alumina and SiC particles are used as abrasives. Ultrasonic power and the flowing resistance of the abrasives make ti possible to abrasive the burr.

  • PDF

A Study on Ultra-precision Lapping of Ceramics with In-Process Electrolytic Dressing (연속 전해드레싱을 적용한 세라믹재의 초정밀 래핑에 관한 연구)

  • 이은상
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.34-39
    • /
    • 2000
  • Application of ceramics has grown considerably due to significant improvement in their mechanical properties such as light weight, chemical stability and superior wear resistance. Despite these character, the use of ceramics has not increased because of poor machinability. The method of using of super-abrasives metal bond wheel was proposed. But it is difficult that super-abrasives metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. If this method is applied, loading and glazing are disappeared apparently. The aim of this study is to determine the machining characteristics in terms of lapping wheel speed, machining time, pressurized weight to the workpiece and peak current using in-process electrolytic dressing applied to the CIB-diamond lapping wheel to achieve ultra-precision lapping machining technique.

  • PDF

Dependency of Planarization Efficiency on Crystal Characteristic of Abrasives in Nano Ceria Slurry for Shallow Trench Isolation Chemical Mechanical Polishing (STI CMP용 나노 세리아 슬러리에서 연마입자의 결정특성에 따른 평탄화 효율의 의존성)

  • Kang, Hyun-Goo;Takeo Katoh;Kim, Sung-Jun;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.65-65
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is one of the most important processes in recent ULSI (Ultra Large Scale Integrated Circuit) manufacturing technology. Recently, ceria slurries with surfactant have recently been used in STI-CMP,[1] became they have high oxide-to-nitride removal selectivity and widen the processing margin The role of the abrasives, however, on the effect of planarization on STI-CMP is not yet clear. In this study, we investigated how the crystal characteristic affects the planarization efficiency of wafer surface with controlling crystallite size and poly crystalline abrasive size independently.

  • PDF