• 제목/요약/키워드: abolished protein

검색결과 200건 처리시간 0.026초

Fermented Ginseng Attenuates Hepatic Lipid Accumulation and Hyperglycemia through AMPK Activation

  • Kim, Do-Yeon;Park, Jong-Seok;Yuan, Hai-Dan;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.172-178
    • /
    • 2009
  • Fermented ginseng (FG) is an ethanol extract of ginseng radix processed with $\beta$-galactosidase. It was hypothesized that FG may exert anti-hyperlipidemic and anti-diabetic activities through modulating AMP-activated protein kinase (AMPK) in HepG2 human hepatoma cells. In this study, we showed that AMPK phosphorylation was stimulated by FG. These effects were abolished by pretreatment with an AMPK inhibitor, compound C. In addition, FG regulated the expression of genes associated with lipogenesis and lipolysis, thus causing suppression of hepatic triglyceride accumulation. In vivo study using db/db mice, FG reduced fasting plasma glucose, HbAlc, and insulin resistance index, when compared to diabetic control. FG also increased the phospho-AMPK and glucose transporter 4 (GLUT4) expressions in liver and skeletal muscle, respectively. In liver, expressions of lipogenic gene were decreased whereas expressions of lipolytic genes were induced, when compared to diabetic control. Taken together, we may suggest that FG ameliorates hyperglycemia and hyperlipidemia through activation of AMPK and could be developed as a health functional food or therapeutic agent for type 2 diabetic patients.

Evidence for Regulation of Interaction of Endogenous Protein Kinase C(Pkc) Substrates with Plasma Membrane by PKC Down-Regulation in K562 Cells

  • Kim, Young-Sook
    • Archives of Pharmacal Research
    • /
    • 제18권5호
    • /
    • pp.301-307
    • /
    • 1995
  • In the particulate fraction obtained from PKC-down regulated K562 cells by treatment for 24 h with 200nM TPA, phosphorylation of two proteins with molecular weight, 100 kDa and 23 kDa (designated p100 and p23, respectvely) was depleted and addition of exogenous purified PKC to this fraction failed to testore their phosphorylation. However, in the soluble fraction, all of phosphoproteins abolished by long-term treatment with TPA were restored by exogenously added PKC. Phosphorylation of two proteins was increased by short-term tretment (20 min), and diminished with the persistant exposure to TPA as well as at a concentration as low as 1nM. When K562 cells were treated with 1 nM and 200 nM TPA for 24 h, phosphorylation of p100 was restored with or without exogenous PKC on 2-3day and 6day after removal of treated TPA, respectively. Two-dimensional electrophoresis of phosphoproteins revealed that phosphorylated p100 (pl=5.9) and p66 species were completely absent from the particulate fraction of K562 cells treated with 200nM TPA for 24 h. These results suggest that the interaction of sensitive endogenous substrates, p100 and p23 with the plasma membrane might be regulated by PKC-down regulation without displacement to the cytosol and the interaction of p100 with the membrane might be reveersible.

  • PDF

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • ;김송자
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF

Transcriptional Regulation of the Glial Cell-Specific JC Virus by p53

  • Kim, Hee-Sun;Woo, Moom-Sook
    • Archives of Pharmacal Research
    • /
    • 제25권2호
    • /
    • pp.208-213
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). As the JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, transcriptional regulation constitutes a major mechanism of glial tropism in PML. It has been demonstrated that SV4O or JC virus large T antigen interacts with p53 protein and regulates many viral and cellular genes. In this study we founts that p53 represses the JC virus early promoter in both glial and nonglial cells To identify the cis-regulatory elements responsible for p53-mediated repression, deletional and site-directed mutational analyses were performed . Deletion of the enhancer region diminished p53-mediated transcriptional repression. However, point mutations of several transcription factor binding sites in the basal promoter region did not produce any significant changes. In support of this observation, when the enhancer was fused to a heterologous promoter, p53 red reduced the promoter activity about three fold. These results indicate that the enhancer region is important for tole repression of JC virus transcription by p53. Furthermore, coexpression of JC virus T antigen with a p53 protein abolished p53-mediated repression of the JC virus early promoter in non-glial cells, but not in glial cells. This finding suggests that T antigen interacts with p53 and regulates JC virus transcription in a cell-specific manner.

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

HO-1 Induced by Cilostazol Protects Against TNF-${\alpha}$-associated Cytotoxicity via a PPAR-${\gamma}$-dependent Pathway in Human Endothelial Cells

  • Park, So-Youn;Bae, Jin-Ung;Hong, Ki-Whan;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.83-88
    • /
    • 2011
  • A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-${\alpha}$ (50 ng/ml), with or without cilostazol ($10{\mu}M$). Pretreatment with cilostazol markedly reduced TNF-${\alpha}$-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) transcription activity, cilostazol directly increased PPAR-${\gamma}$ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-${\gamma}$ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-${\alpha}$-induced endothelial cytotoxicity via a PPAR-${\gamma}$-dependent pathway.

NOX4/Src regulates ANP secretion through activating ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria

  • Wu, Cheng-zhe;Li, Xiang;Hong, Lan;Han, Zhuo-na;Liu, Ying;Wei, Cheng-xi;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.159-166
    • /
    • 2021
  • Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 μM) and BQ788 (0.3 μM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 μM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 μM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxia-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 μM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 μM) and LY294002 (10.0 μM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

생쥐 착상전 배아의 인슐린 신호전달 과정에 Phosphatidylinositol 3-Kinase의 관련성 (Involvement of Phosphatidylinositol 3-Kinase in the Insulin Signaling in Preimplantation Mouse Embryos)

  • Gye, Myung-Chan;Nah, Hee-Young;Kim, Moon-Kyoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권1호
    • /
    • pp.29-35
    • /
    • 2000
  • A phosphatidylinositol 3-kinase (PI3K)는 인슐린 신호전달의 상위구성 요소로 다양한 세포에서 단백질합성을 촉진한다. PI3K와 하위의 mammalian target of rapamycin (mTOR)가 착상전 생쥐 배아의 인슐린 신호전달에 관여하고 있는지의 여부를 조사하고자 하였다. 생쥐의 8-세포기 배아를 인슐린 또는 PI3K및 mTOR의 억제제를 포함한 조건에서 배양하면서 발생율, 할구수, 단백질합성 및 인산화를 조사하였다. 인슐린의 첨가는 포배형성과 부화 등 형태발생을 촉진하며 포배내 평균 할구수, 8-세포기 배아의 단백질 합성과 인산화를 유의하게 증가시켰다. PI3K의 억제제인 wortmannin과 mTOR를 억제하는 rapamycin은 인슐린에 의한 발생율, 포배내, 할구수, 단백질합성의 증가 효과를 상쇄하였다. 오토라디오그라피에서 두종의 인산화단백질인 pp22와 pp30의 인산화가 인슐린 처리에 의해 증가함을 확인하였다. 이상의 결과에서 생쥐 8-세포기 배아의 발생을 촉진하는 인슬린 신호의 전달에 PI3K와 mTOR가 관여함을 알 수 있다.

  • PDF