Journal of the Korean Institute of Intelligent Systems
/
v.22
no.4
/
pp.405-413
/
2012
Low misclassification performance is significant with high classification accuracy for a reliable diagnosis of ECG signals, and diagnosing abnormal state as normal state can especially raises a deadly problem to a person in ECG test. In this paper, we propose detection and classification method of abnormal rhythm by rule-based rhythm classification reflecting clinical criteria for disease. Rule-based classification classifies rhythm types using rule-base for feature of rhythm section, and rule-base deduces decision results corresponding to professional materials of clinical and internal fields. Experimental results for the MIT-BIH arrhythmia database show that the applicability of proposed method is confirmed to classify rhythm types for normal sinus, paced, and various abnormal rhythms, especially without misclassification in detection aspect of abnormal rhythm.
With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.
To investigate the maternal and child factors associated with early detection of cerebral palsy, 74 mothers of cerebral palsy children who were born since January 1, 1980 and being treated at Taegu Rehabilitation Center for the Handicapped, Rehabilitiation Center of Taegu University, St. Paul Children's House and Pusan Welfare Association of Cerebral Palsy Children were interviewed from February to April 1987. There is no association between age of child when parents noticed the child's abnormality and educational level of father but it tend to be detected earlier when education level of mother is college or above compared with high school or under. There is a trend of earlier detection of child's abnormality although statistically not significant in case father is professional or managerial worker, monthly income of father is over \610,000, child is first-born, age of the parents is 34 years or under, child is a boy, and child has periodic well-baby check-up. The child's abnormality is detected earlier when mothers had 7 prenatal visits or more compared with those who had 6 visits or less (p<0.05). Parents noticed the child's abnormality first in 85.1% of the cases whereas doctors detected it first in 2.7% and this percentage was not different whether the child had periodic well-baby check-up or not. The first physician's diagnosis of the children was cerebral palsy in 36.5% and the rest was normal, need for observation, uncertain, etc. Parents took the child to doctor for diagnosis 2-3 months after they noticed the child's abnormality and after the child was diagnosed as cerebral palsy parents either took no therapeutic measure or brought the child to physiotherapy or acupuncture or gave herb medicine before they started specific rehabilitative therapy. For early detection of the cerebral palsy children, teaching of evaluation method for child development should be reinforced both in medical school and clinical training course and should train the specialist for diagnosis and treatment of crippling conditions. Also, public education is needed for the importance of early detection of crippling conditions and currently available methods for diagnosis and treatment.
In pediatric healthcare, early detection of cardiovascular diseases in newborns is crucial. Analyzing heart sounds using stethoscopes can be subjective and reliant on physician expertise, potentially leading to delayed diagnosis. There is a need for a simple method that can help even inexperienced doctors detect heart abnormalities without an electrocardiogram or ultrasound. Automated heart sound diagnosis systems can aid clinicians by providing accurate and early detection of abnormal heartbeats. To address this, we developed an intelligent deep-learning model incorporating CNN and LSTM to detect heart abnormalities based on artificial intelligence using heart sound data from stethoscope recordings. Our research achieved a high accuracy rate of 97.8%. Using audio data to introduce advanced models for cardiac abnormalities in children is essential for enhancing early detection and intervention in pediatric cardiovascular healthcare.
Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.33-40
/
2022
In this paper, we propose a system that analyzes drone photographic images of panel-type factory roofs and conducts abnormal detection of bolts. Currently, inspectors directly climb onto the roof to carry out the inspection. However, safety accidents caused by working conditions at high places are continuously occurring, and new alternatives are needed. In response, the results of drone photography, which has recently emerged as an alternative to the dangerous environment inspection plan, will be easily inspected by finding the location of abnormal bolts using deep learning. The system proposed in this study proceeds with scanning the captured drone image using a sample image for the situation where the bolt cap is released. Furthermore, the scanned position is discriminated by using AI, and the presence/absence of the bolt abnormality is accurately discriminated. The AI used in this study showed 99% accuracy in test results based on VGGNet.
Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.6
/
pp.1478-1499
/
2024
Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.
Seo, In-Chul;Kim, Jae-Chul;Kim, Young-No;Jeon, Young-Jae
Proceedings of the KIEE Conference
/
2001.11b
/
pp.403-405
/
2001
This paper presents the detection method of partial discharge in metal clad switchgear(MCS) using electromagnetic technique. Two antennas are located in the inside and outside of the MCS, and electromagnetic waves detected by these antennas are analyzed and compared by FFT method in order to identify an insulation abnormality. As a result of the experiment by the proposed method, we show the detection possibility for partial discharge in the MCS. The proposed method is expected to apply to insulation condition observation and an accident prevention in the MCS effectively.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.6
/
pp.287-294
/
2016
APT attack aimed at the interruption of information and communication facilities and important information leakage of companies. it performs an attack using zero-day vulnerabilities, social engineering base on collected information, such as IT infra, business environment, information of employee, for a long period of time. Fragmentary response to cyber threats such as malware signature detection methods can not respond to sophisticated cyber-attacks, such as APT attacks. In this paper, we propose a cyber intrusion detection model for countermeasure of APT attack by utilizing heterogeneous system log into big-data. And it also utilizes that merging pattern-based detection methods and abnormality detection method.
Support vector learning attracts great interests in the areas of pattern classification, function approximation, and abnormality detection. In this pater, we design the controller using support vector regression which has good properties in comparison with multi-layer perceptron or radial basis function. The applicability of the presented method is illustrated via an example simulation.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.6
/
pp.1-7
/
2016
As new information and communication technologies evolve, security threats are also becoming increasingly intelligent and advanced. In this paper, we analyze the time series data continuously entered through a series of periods from the network device or lightweight IoT (Internet of Things) devices by using the statistical technique and propose a system to detect abnormal behaviors of the device or abnormality based on the analysis results. The proposed system performs the first level abnormal detection by using previously entered data set, thereafter performs the second level anomaly detection according to the trust bound configured by using stored time series data based on time attribute or group attribute. Multi-level analysis is able to improve reliability and to reduce false positives as well through a variety of decision data set.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.